
A COMPONENT FRAMEWORK FOR 

BUILDING WEB SCIENCE GATEWAYS 

AND PORTALS 

 

 

 

 

 

 

MEHMET AKIF NACAR 

 

 

 

 

 

 

Submitted to the faculty of the Indiana University Graduate School 

in partial fulfillment of requirements 

for the degree 

Doctoral of Philosophy 

in the Department of Computer Science 

Indiana University 

November 2007  



 

 ii

 

 

 

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of  

the requirements for the degree of Doctor of Philosophy. 

 

 

 

Doctoral Committee 

 

 

 

 

________________________________ 

Geoffrey Fox (Principal Advisor), Ph.D 

 

 

 

 

________________________________ 

Donald McMullen, Ph.D 

 

 

 

 

________________________________ 

Minaxi Gupta, Ph.D 

 

 

 

 

________________________________ 

David Leake, Ph.D 

 

 

 

 

 

 

 

November 27, 2007 

 



 

 iii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2007 

Mehmet Akif Nacar 

All Rights Reserved 

  



 

 iv

Abstract 

Portlet-based Grid portals have become a crucial part of the international distributed 

computing infrastructure to support computational science (“cyberinfrastructure”) by 

providing component-based problem solving environments for scientists. Although 

Web portals are intended to provide user-friendly environments with easy-to-use 

interfaces, the development of portals and their portlet components is time consuming. 

We aim to address this problem by providing reusable components for rapid portlet 

development. Our approach, Grid Tag Libraries and Beans (GTLAB), encapsulates 

common Grid operations with reusable XML tags, providing a dramatically simplified 

programming interface to common cyberinfrastructure services.  GTLAB also provides 

a way for creating composite tasks that models the requirements of computational 

science portals. In addition to standard Grid job submission and remote file operation 

tags, we also provide management and monitoring capabilities for Grid tasks. This 

system can persistently store job metadata, which results in a permanent storage for 

archiving and reference. 

In this dissertation, we have studied and observed two distinct science gateways as 

use cases. First, the QuakeSim portal is a problem solving environment to develop a 

solid Earth science framework for modeling and understanding earthquakes. In this 

study, we have proposed an evolutionary approach to allow TeraGrid usage in addition 

to clusters for QuakeSim portal. Second, VLab is a Grid and Web Service-based system 

for enabling distributed and collaborative computational chemistry and material science 

applications for the study of planetary materials. The requirements of VLab include job 

preparation and submission, job monitoring, data storage and analysis. 
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Although GTLAB provides support for simple Grid workflows, we must also 

investigate the problem of integration with existing workflow systems. We have thus 

extended GTLAB to support the widely used Condor DAGMan and Taverna workflow 

systems. These extended tags demonstrate that large workflows can be integrated 

within Grid portlets without burdening of developers. 
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Chapter 1  

Introduction  

Over the last decade, the improvement of Web technologies has produced e-Science 

[1], in which scientific communities adopt, extend, and influence the developments of 

Web computing. Grids and Grid computing [2, 3] provide the distributed computing 

infrastructure (“cyberinfrastructure”) foundations for e-Science activities. Communities 

want to see daily impacts of their research and arrange daily activities based on given 

information. Many science applications are broadcasted over the Internet through 

portals.  Examples range from Earth sciences to space exploration. While Genomic 

research encrypts genetic sequences of the cells in micro level, space research seeks 

knowledge about the universe in largest possible scales. Scientific Web applications in 

a sense monitor all the aspects of human life with instruments from microorganisms to 

cosmos.  
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The efforts of building science knowledge management environments can be 

categorized in two aspects: 1) Core Grid applications that serve to construct 

foundations, and 2) management of the Grid applications. Figure 1.1 illustrates three-

tier architecture that contains resource providers, middleware and portals. 

Grid infrastructure is spanning multiple organizations in different administrative 

domains (that is, creating “Virtual Organizations” [2]). Each autonomous intuition 

provides computing resources and data capacity through organizational boundaries. 

Therefore, Grid resources must respect the security and privacy concerns to tie resource 

providers and scientists. Examples of large virtual organizations providing data storage, 

computing power, and Grid services include TeraGrid [4], the Open Science Grid 

(OSG) [5] and Enabling Grids for E-SciencE (EGEE) [6].   

The Grid initiatives must provide middleware layer to access supercomputing 

resources and data seamlessly. Grid middleware that is serving Grid users includes the 

Coordinated TeraGrid Software and Services (CTSS)  [7] on TeraGrid, the Virtual Data 

Toolkit [8] on OSG, and gLite [9] on EGEE. Grid middleware services range from 

security, file management, information service, and schedulers.  

Grid Computing Environments (GCEs) [10, 11] provide a user view through the 

client tier of computational Grid technologies.  GCEs are often associated with Web 

portals, but in general they may be any type of client management environment. GCEs 

also come in two primary varieties: Problem Solving Environments (PSEs), which 

provide custom graphical user interfaces for working with specific sets of applications, 

visualization tools, etc; and shell-like system portals, which provide direct access to 
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understanding earthquakes. The Virtual Laboratory for Material Sciences (VLab) 

project [15] is an example of a science gateway for computing the  properties of 

planetary materials under extreme conditions and provides the specific motivating cases 

for our research.  

A science portal supports the work of a scientific team or community by combining 

a Web portal and associated Web Services. By using a Web browser, a scientist can 

access both private and shared workspaces of discipline-specific data and tools. Science 

gateways are also access points to Grids of computational and data resources, allowing 

a user to leverage the capability of a Grid without forcing the user to deal with the 

complexity of Grid technology.  

Science portals have been developed for over a decade, and much progress has been 

made to standardize their architecture and component models.  Many science gateway 

initiatives use the so-called portlet component model, defined by the Java Specification 

Request (JSR) 168 [16].   Many open source JSR 168 containers have been 

implemented, with the GridSphere [17, 18] container serving as a very popular 

implementation in the scientific community. Other examples include uPortal [19], Pluto 

[20], Jetspeed [21], Sakai [22], LifeRay [23], JBoss [24], and eXo [25]. General 

purpose, pluggable Grid portlets for remote job submission, interactions with Grid 

information services, remote file management, and security credential management 

have been developed by the Open Grid Computing Environments (OGCE) [26, 27] 

collaboration and the Grid Portlets [28] project.  Most Java-based Grid portals use the 

Java COG kit [29] to build their Grid clients. 
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Most Web applications employ server-side technologies to provide rich dynamic 

content to its viewers. JSF is a dynamic Web application framework that is similar to 

other dynamic Web application templates like velocity (http://velocity.apache.org), 

Java Server Pages, and Spring (http://www.springframework.org). JSF provides 

dynamic content using Java servlet technology. Dynamic content is generated based on 

the request and response paradigm. Unlike static HTML pages, Web application 

frameworks allow interaction with users. The server pages take requests, process them 

and respond to the user through a Web interface. Besides its inherent virtues, we 

believe that JSF is very well suited for science gateway development, as we will 

discuss.  

JSF applies the Model-View-Control (MVC) software design pattern [30, 31] to 

decouple data models, action controllers and user interface widgets into separate 

components. Within the framework of JSF, the model corresponds to a backing 

JavaBean: a piece of Java code that is responsible for managing the application’s data. 

The backing bean itself is typically a client to a database or a remote Web service. One 

of JSF’s hallmarks is that these beans can be developed outside the JSF framework; that 

is, it is not necessary to import any JSF-specific code. This means that the beans can be 

reused in non-web based applications and can run on stand-alone applications. This is 

accomplished through a design pattern known as “inversion of control” [30]. The 

controller corresponds to a JSF servlet that manages user requests. Finally, the view 

corresponds to Web interfaces of JSF. This architecture separates the data access and 

user interaction. MVC encourages the reuse of backing beans within different 

applications. 
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We need a component model for User Interface (UI) matching Grid services as a 

component model for Grid middleware. Portlets attached to services do not work 

except in simple cases. There is no good way to link portlets and then most UI's need 

workflow services. Therefore we must use tags as component model and allow multiple 

tags in a portlet application. Our solution to building science gateways is providing a 

modular component framework. This framework provides reusable parts (tags) to 

construct portlet pages as well as composing and managing these parts. 

1.1 Motivation 

Scientific knowledge is shared by the community in terms of its needs and levels of 

understanding. To accomplish this missions, Grid portals [32] distribute the knowledge 

resources on the Web and restrict accesses to the groups of people. In that sense Grid 

portals are science gateways for people ranging from researchers at national research 

labs to schoolchildren. Therefore, all age groups and educational levels can access to 

the information thorough science portals on demand. 

In the Grid portal field there are numerous efforts to build intuitive gateways and 

construct standards to build these applications using common platforms that help to 

interchange the knowledge between the institutions. These developments require 

computer scientists to study the Grid portals field. 

Grid services vary from Globus toolkit [33], Condor [34], Unicore [35], and gLite 

[9]. We want to provide generic and ready to use clients for these services. There are 

efforts to provide programming level abstractions to the Grid such as Java Commodity 

Grid Kit (CoG Kit) [29], Simple API for Grid Applications (SAGA) [36] and Portlet 
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Vine [37] . One of our goals is utilizing Grid resources transparently on resources that 

range from TeraGrid resources to our Gridfarm clusters at Indiana University.  

The first generation Grid portals for interacting with this middleware were stovepipe 

solutions to fit needs of scientists that basically have capabilities to run and manage 

applications through Web applications [10]. Second generation portals are aware of the 

need to build reusable software components and propose a common framework for 

scientists. The Java Specification Request (JSR) 168 standard [16] and portal 

frameworks provide a standard portlet specification that defines programming 

interfaces and portlet container model.   

The challenge for the community now is to define the third generation of Grid portal 

technology.  In our research we have brought the problems of second-generation portal 

development on the table, and we have proposed solutions to these research area. We 

have proposed to model fine-grained Grid portal components that can flexibly compose 

client tier applications to Grid capabilities.  

1.2 Problem Statement 

The developments of emerging Web technologies leveraged Grid communities to 

use Web resources efficiently in GCEs. As a result, legacy applications can be accessed 

through Web interfaces. These changes have impacts on the foundations on the 

applications such as preserving the access to the restricted resources. We need to 

maintain the policies and rules that exist in the low level application and map them to 

the Web application level smoothly. Thus, Web applications are converging to look like 
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desktop applications over the time. Web applications must provide look and feel pages 

and customization to access the back end resources. 

To achieve interoperability and to avoid relying on unsustainable custom solutions, 

science portals and e-Science generally follow Web specifications closely.  For the 

portal community, the dominant specification has been JSR 168. After completing 

repeated efforts on building OGCE and QuakeSim portal [14, 38] we have learned the 

shortcomings of JSR 168 consequently. An important aspect of the JSR 168 is to build 

portlet components by implementing low level application program interfaces. There 

are two drawbacks of this approach: i) Portlets are coarse-grained components that 

wrap entire Web applications, not their functional components; and ii) portlet 

implementations are not reusable if one needs to combine one or more portlet 

capabilities. Consequently, we conclude science gateways have an inadequate 

component framework: JSR 168 is a useful starting point by insufficient.  

Our research is about a novel approach to build a better component model for Grid 

portals that can enable Grid operations all in one application. Unlike the previous 

OGCE Grid portlets, Grid operations can be contained in portlets with reusable widgets 

as shown in the snippet at Figure 1.2. This approach adds one more layers on the JSR 

168 portlet container, since it is wrapping JSR 168 programming interfaces with 

reusable widgets. The new layer may cause performance degradation and latencies 

because of additional processes. In our study, we will measure the latency to show 

whether it is acceptable. 
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<html> 

<body> 

<f:form> 

<o:submit id=”test” action=”next_page” /> 

<o:myproxy id=”pr” hostname=”gf1.ucs.indiana.edu” 

port=”7512” lifetime=”2” username=“mnacar” 

password=”***” /> 

<o:jobsubmit id=”task” hostname=”cobalt.ncsa.teragrid.org” 

provider=”GT4” executable=”/bin/ls” 

stdout=”tmp/result stderr=”tmp/error” /> 

</o:submit> 

</f:form>  

</body> 

</html> 

Figure 1.2 Grid tags are used to build a sample portlet application that calls services including: 
a) Myproxy service to get user credential, and b) GRAM service to execute a script. 

There are many ways to deal with a collection of tasks in sequence. This approach 

leads to workflows, and workflows are commonly used in the Grid community. The 

complexity of applications and staging requirements enforce workflow usage. Grid 

applications apply existing Grid workflows [39] to process sophisticated execution 

flows. Our research scope covers strategies to leverage these workflow clients to 

integrate to Grid portals. The problem here is to find out the correct representation of 

workflow execution and monitoring within Grid portals. Workflow composition is out 

of scope of our research. 
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Another problem of portals in general is to provide access control to the portlet 

contents. That is, we must consider what happens after a workflow is executed and data 

is generated.  This is particularly important when making a scientist’s unpublished 

scientific data and computations available through Web interfaces: only the scientist 

and designated collaborators should have access, although many other people will use 

the portal (and the same components) to view different data sets. Portals frameworks 

restrict user or group access rights on portlet components. Users will see the same 

content of accessible portlets no matter what their rights are or what group they are in. 

The portlet Application Programming Interface (API) does not constrain the content 

access; in other words there is no policy enforcement on customizing portlet contents 

per users. We have studied enforcement methods to restrict the portlet access to the 

user groups such as administrators, directors, researchers, providers, customers, study 

groups, students and anonymous users. 

1.3 Research issues 

When we are seeking solutions to the all problems listed on the problem statement, 

we have raised many critical research issues that we believe contributes the field. We 

will list major research problems including the level of granularity on Grid operations. 

We observed these leading problems are following: a) Grids are complicated, b) 

existing client tools are also too complicated (e.g., the COG), and c) portlets are not an 

adequate component model for Grids. Therefore, our main research focus is about to 

find correct architecture for Grid operations including proxy credential, file operations 

and transfers, and job submission. 
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The key research issue is the lack of a simple client interface to Grid services, 

particularly for Grid portals. There also is the need for a component environment 

compatible with Web Model-View-Controller architectures. This component model 

should be extensible beyond any specific implementation. 

How do we apply Grid components to Web applications to build modular portals? 

There are server-side Web application frameworks to build portals. JSR 168 is one of 

the standard portlet container that support servlet-based Web applications. Velocity, 

Java Server Pages (JSP) [40], Struts and Java Server Faces (JSF) [41, 42] are some of 

the technologies to develop portals. JSF is interesting because its [43] component-based 

architecture fits better to our component model. Therefore we have chosen JSF 

application framework to prototype Grid tag libraries. The detailed discussion of JSF is 

given in Section 5.6. However, we are able to extend our model to any other server-side 

Web framework. 

One of the problems with the Grid operations is how to represent them in the context 

of Web applications. Java servlets [44] already provide an API to program server-side 

applications by using object oriented programming paradigm. Thus, application logic in 

the context of Web applications is reusable among different applications. But there is 

no way to reuse server pages in presentation logic. To come up with solutions for 

building modular Web application pages, we introduce widgets as tag libraries. Tag 

libraries encapsulate reusable Grid components so that allowing an extensible 

architecture for future additions.  

Another interesting research problem is applying workflows and their dependencies 

in a generic way to Grid portals. There are different approaches to apply workflows on 
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demand. Some science disciplines closely rely on composing workflows such as life 

science workflows defined in [45]. Thus, they need graphical tools to generate complex 

workflows easily. Other types of scientists usually work on the well-established 

workflows composed by workflow authors [46]. They only need to enact and monitor 

the workflows. Depending on the nature of our case studies, we have focused on the 

first type of workflow demands by implementing graphs. Then we studied workflow 

enactment and monitoring integrated into Grid portals.   

How do we handle and identify the jobs within a user context? One of the research 

problems we have to deal with is user metadata management. For example, a user 

session last from a user logs into a portal until user logs out or session lifetime expired 

or browser window closed. We needed to have mechanism to manage user metadata for 

tracking Grid jobs that running on Grid servers. Therefore we need to persist and store 

job metadata within user’s context both archiving and reusing reasons. 

We have identified another interesting research issue in the scope of portlet content 

authorization, when we developed the Common Instrument Middleware Architecture 

(CIMA) [47] portal. We need to find out how we can deal with user access rights and 

groups in the context of collaborative environments. There are authorization 

frameworks that comply with these requirements. But the problem is portals do not 

apply any of this authorization schemes in the scope of portlet contents. We have 

worked on CIMA case to find solutions that are explained in Section 7.3. 
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1.4 Grid Tag Libraries 

Grid Tag Libraries and Beans (GTLAB) [15, 48] provide a set of JSF tag libraries 

for Grid portal development. This library encapsulates atomic Grid operations as well 

as multi-staged operations. We explain GTLAB component model and its job 

management capabilities in Chapter 5. 

 

Figure 1.3 OGCE portlets screenshot where all Grid operations are implemented as portlets 
(i.e., tabs).  The portlet shown is a generic interface to Globus GRAM middleware. 

Although OGCE portlets are functionally similar to GTLAB, OGCE portlets are 

based on standard Web applications and portlet API. Portlet API defines a specification 
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[16] for portlet developers to reuse portlets among different portal frameworks such as 

GridSphere, Liferay and Jetspeed. Thus, Application developers have to customize the 

portlets to comply with specific needs of the gateways. Another aspect of OGCE is that 

the Grid capabilities are separate portlet applications in Figure 1.3. Developers need to 

assemble several portlets to get workflow capabilities. The problem is that portlets are 

not composable elements. They are independent Web applications that live in a 

container. It is not possible to express dependencies for example between portlets. All 

these efforts require substantial effort of programming. The developers need to reuse 

and modify some of the codes, view pages, configuration and deployment descriptors. 

On the other hand, GTLAB enables all capabilities within a Web application that 

requires minor customization on the view pages. All other APIs, libraries, and 

deployment descriptors will be the same. 

To provide a component model for Grid portals, we must provide abstract and 

extensible interfaces and APIs. The advantage of this approach is that new tags and 

beans can be added by deriving the interfaces. For example, Condor and Taverna 

support can be added in the same way. 

1.5 Contributions of this research 

The major contribution of this thesis is to provide a component framework for 

science gateways. We have designed, developed and applied such a framework through 

several science gateways in various fields. We have studied the problems and our 

approaches to the solutions by designing Grid tag libraries that are the building blocks 

of the Grid portals. Grid tags are reusable and customizable on portal platforms instead 
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of re-implementing all capabilities for each portal instance repeatedly. We must 

therefore design Grid operations as components that application developers can get 

them together to build Grid portals. This work is discussed in Section 5.2. 

Aggregation of services and capabilities requires control over the flow of the 

execution which in sense enforces us to match workflow mechanisms to the portal. 

Grid portals naturally require one or more Grid operations running in a sequence that is 

defined in dependency rules. Generally simple flow controls can be represented as a 

DAG. We also have investigated applications going beyond simple DAGs with the full-

fledged workflows. The example usage cases may include using filters to refine data, 

orchestrating Web services and Grid services within a context of workflow. This work 

is discussed in Section 6.6. 

Grid tag libraries framework manages user accounts within portal sessions. User 

sessions are able to list ongoing jobs from previous sessions. Metadata and status 

information can be monitored by the Grid users.  

Persistency feature stores and archives metadata information about Grid tasks in the 

permanent storages for each user. Although metadata information is stored for 

archiving, they are also used for resubmitting the same parameters for repeated 

experiments. Collecting all these features together, Grid tag libraries provide a 

component framework for Grid community.  

We have experienced that Grid tag libraries provide rapid development for 

application programmers without any additional overhead on runtime. For the VLab 

portal we have composed DAGs for the several VLab usage scenarios. Examples 

include  
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• Collecting input parameters and files needed to run computational experiments. 

• Moving output files and staging them to visualization services and monitoring 

them in overall.  

We also have applied Grid tags to QuakeSim Eartquake science portal to run Disloc 

[49] and Geofest [50] applications and monitor the progress of these simulations and 

manipulate output data to generate mash-ups plots and visualizations.  

We have summarized the Grid portal efforts of scientific communities including 

VLab, CIMA and QuakeSim. These uses cases have shown that similar issues and 

solutions are applicable to different community requirements. Our generic Grid tags 

have been applied to these portlets by adjusting configuration and customization 

principles for each case. Therefore we have observed rapid development of these 

portals.  

1.6 Organization of the Thesis 

The organization of the rest of this thesis is as follows:  

Chapter 2 surveys the state of the art technologies used within science gateways 

literature and gives the summary of terminologies.  

 Chapter 3 builds background on Grid computing environments generally. It 

summarizes Grid and Web services as gateway to virtual organizations. We also 

evaluate Grid portal approaches and techniques that used in the past. We also 

summarize the motivating user scenarios to Grid portals.  

Chapter 4 mentions about case studies that we have developed as Grid portals. 

VLab, CIMA and QuakeSim portals are our major applications.   
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Chapter 5 presents the foundations of Grid Tag library approach and evaluates it in 

architectural perspective. We mention about design principles of Grid tags and beans. 

We identify the modules of Grid tags are: session manager, component parser. We also 

showed that how Grid tags deal with DAGs and workflows and handle persistency and 

archiving.  

Chapter 6 covers workflow and DAG management for various Grid workflow 

mechanisms including OGSA services, Condor DAGMan and Taverna.  

Chapter 7 mentions about access control mechanisms on portlet contents and our 

solution to the CIMA portal problem.  

Chapter 8 summarizes the work done in this thesis, highlights major contributions, 

discusses possible extensions of Grid tag libraries, and presents future directions for our 

research. 
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Chapter 2  

Background  

2.1 Overview of Grid Computing Environments 

Grid Computing Environments (GCEs) [10] provide a user view of computational 

Grid technologies.  GCEs are often associated with Web portals, but in general it may 

be any type of client management environment. Web portals are accessible gateways to 

the resources and services. GCEs come in two primary varieties:  

• Problem Solving Environments (PSEs), which provide custom interfaces for 

working with specific sets of applications, visualization tools, etc; and 

• Shell-like system portals, which provide direct access to basic commands such as 

file manipulation and command execution. 

This situation began to change rapidly in early 2002 with the emergence of two 

important concepts: reusable portal components (portlets) and Web service 
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architectures.   Java portlet components became standardized with the Java 

Specification Request JSR 168 [16].  Web services architectures are summarized in 

[51].   Modern portal systems have adopted these two cornerstones and follow a general 

architecture.  Standard-based portlets provide reusable functional components that can 

be shared between different portal installations.  Web services decouple the portal 

functionality from its presentation layer.   

We will summarize the efforts from building GCEs to science gateway in last 

decade. 

2.1.1 GCE Shell 

We describe the design and features of our Grid Computing Environments Shell 

system, or GCEShell [52]. We view computing Grids as providing essentially a 

globally scalable distributed operating system that exposes low level programming 

APIs. GCEShell environments are separated from specific user interface rendering.  

GCEShell consider here a general engine for managing Grid and Web service clients. 

This GCEShell engine  is initially implemented as a command line interface, is inspired 

by the Unix shell environments [53], which provide a more user friendly environment 

for interacting with the operating system than programming directly with system level 

libraries.   

2.1.2 GPDK 

The Grid Portal Development Kit (GPDK) [54] provides classical three-tiered 

architecture for middleware applications. GPDK operates Model View Controller 

(MVC) [30] to separate control and presentation from the application logic for 
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accessing Grid services. GPDK utilizes large-scale scientific applications through Web 

interface. GPDK has its own Portal Engine (PE) that redirects user requests to the 

server and responses from the server. PE implements essential user management, 

application management and presentation services for GPDK portal. 

2.1.3 Gateway System 

Gateway system [55] is one of the early computational portal effort that provides 

seamlessly secure and uniform access to computational backend services. It applies 

three-tiered architecture by supporting distributed component-based middleware. 

Gateway Web portal implement services including user interface, metadata, security 

and shared visualization. 

2.1.4 GridSphere Portal Framework 

Until portlet concept started with JSR 168, there were stovepipe Web applications 

for Grid services. GridSphere [17, 18] is one of the first implementations of JSR 168, 

along with uPortal [19] and Liferay [23]. GridSphere can be used to build Web portals 

that are compatible with JSR 168 portlet container standards. GridSphere additionally 

provides Grid portlets that access to a number of services.  GridSphere’s Grid portlets 

provide a set of capabilities that supports Grid services available by the Globus toolkit, 

including Globus Resource Allocation Manager (GRAM) [56], GridFtp [57], 

Monitoring and Discovery System (MDS) [58], MyProxy [59], Web Service Resource 

Framework (WSRF) [60] for GT4 and Open Grid Services Architecture (OGSA) [61]. 

GridSphere container additionally provides portlet services for Grid. Thus, GridSphere 

Grid portlets are strictly dependent on the GridSphere portal framework; as a result 
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these portlets are not portable among portal containers. However, Vine project [37] is 

trying to decouple Grid portlets from GridSphere. This effort is extensible for stand-

alone applications through Grid portlets.  

2.1.5 OGCE Portlets 

OGCE portlets [27] are built on Velocity and provide access to common Grid 

services through the Java CoG abstraction layer [62]. OGCE also provides portlets for 

Condor and Storage Resource Broker (SRB) services [56]. These portlets are compliant 

with JSR 168 and portable among portal frameworks. For example, one can deploy 

OGCE portlets on either GridSphere or uPortal. Each portlet provides a single Grid 

capability.  JSR 168 does not support inter-portlet communication in its specification; 

however, OGCE portlets has simple in-memory hash-tables that share session data 

between portlets.  This is typically used to access proxy credentials.  

2.2 Typical Grid Portal Usage Scenarios 

Grid portals address wide science community problems ranging from atmospheric 

discoveries to virtual observatories. There are various types of users needed to be 

served. There are also numerous applications to being utilized within portal 

environment. To overcome these problems, there are different types of Grid portal 

approaches exist starting from GPDK, the following OGCE and Grid portlets of 

GridSphere.  

In this chapter we discuss several different use cases with scenarios to build a Grid 

portal. A science gateway building process starts with demands from research/science 

communities, such as if they have long running applications in their lab and they want 
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to expose these applications to the world and to observe their impact. They need to use 

the Web and broadcast the dynamic information to international communities. This 

evaluation is a burdening transition. First, Grid portals need to design efficient 

interfaces to enable scientists to do their work more effectively. Second, they need to 

advertise their backend services and make them available through standard interfaces 

like Web services. Third,  when they are doing all this web development, they also need 

to keep their services and data secure. In this case, they need to enforce policies for user 

authentication and to describe access rights of users. These are classic Computer 

Science problems, but they become much more difficult in distributed environments.  

Grid community wants to discuss problems at appropriate scope levels. For instance, 

Grid providers have problems to publish the services on broad platforms, Grid users 

willing to access capabilities that are aggregated on a gateway and application 

developers wants to comply all these needs. Thus, Grid architects have to come up with 

solutions to these issues in great detail, although they need to provide high level tools.  

The successful practices and useful science gateways came out by following the 

requests mentioned before. For example, LEAD, NVO, VLab, QuakeSim, and CIMA 

portal can be considered that accomplished successfully. There are success stories 

about these portals in applications chapter. 

2.2.1 User scenario for VLab portal 

VLab portal is primarily focused on computational material science environments, 

by collaborating scientists, sharing information and keeping repositories.  want to 

support the Web technologies for easy to use and portable environments. Plane-Wave 

Self-Consistent Fields (PWscf) [63], part of the Quantum Espresso suite, is used to do 
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simulations for computational material science. It is desirable to make PWscf into a 

gateway because PWscf requires challenging processes. These processes include 

computational experiment preparation, running applications and evaluating results 

either in the visual or non-visual environments. Our main contribution to VLab is 

managing the complicated flow control of processes by the Web interfaces.  

Any given tasks might involve input file generation, code submission, data analysis, 

and visualization. These tasks are often linked and have dependencies among them. A 

need thus arises for a workflow and associated software, such as a workflow tags. 

Workflows might themselves be composed of simpler workflows. An example that 

illustrates the PWscf job submissions in section 4.2. 

After we described the community demands, we have evaluated different Web 

application frameworks and portal frameworks. We have found GridSphere and JSF are 

the best candidates. Because JSF provide component based Web environment 

compared to equivalents JSP and Velocity. GridSphere provide JSR 168 standard 

portlet component model with a robust framework, well supported and maintained. 

Then we have started thinking to develop fine grained component model to build 

portlets out of reusable tags. This improvement guarantees less cost and time 

contribution and rapid development.  

We have studied security extremes on the CIMA portal case, besides application 

management concerns. 
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2.2.2 User scenario for scientific workflows  

Users are looking from their specific perspective. When you talked to people from 

different communities, you will see the problems and concerns are similar. We can 

group these concerns based on our observations as following: 

1. Efficient user interface design 

2. Manage services and applications 

3. Follow up the progress  

4. Display the results 

5. Manage all of the above in a workflow 

6. User account management 

These demands are common and there are common solutions to these problems. 

PSEs, Grid portals and science gateways all seek solutions to these issues. There are 

practice of submitting jobs, account management, interface design and display 

technologies available. But we wanted to introduce supporting workflows that tied into 

Web application framework as components. Thus, we sketched a solution to all 

possible demands from different communities. We applied an abstract component 

model which is tag libraries. For example, we can design interface and workflow for 

VLab people and deploy it as a science gateway. Similarly, we can design a different 

interface and workflow by using the same component model and make CIMA science 

gateway available.  

2.2.3 User scenario for access control of portlets 

CIMA users collaborate on crystal sample data such as crystallographers giving 

feedback for the samples from different labs. There are crystal owners, labs, and 
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students on CIMA portal. Crystal owners are responsible for publishing samples and 

their data. Crystallographer analyze and classify the samples, users can see their own 

samples and the others’ samples unless they are private. Crystallography labs are 

responsible for broadcasting video and lab conditions real-time. Students who demand 

all the capabilities on the portal to understand crystal features. In some cases, students 

will replace with pharmaceutical companies that demand crystal analysis.  

CIMA users have roles when they registered to the portal in first place. Portal 

administrators assign the users to the relevant groups. CIMA roles and groups restrict 

user access rights to the resources. Thus, every other user can see different sample data 

on their window, and they can customize display on demand. To this extent, CIMA 

portal is a science gateway to Crystallography people that they can share data and make 

collaboration on the data. 

2.2.4 User scenario for Web 2.0 portals 

In this aspect, we will evaluate Web 2.0 usage cases to build portals. Most of the 

portal engines are heavyweight server page applications such as JSP, JSF, and Struts. 

Google iGoogle [64] and Netvibes [65] bring new portal environments to the Web. 

Web technologies usually constructed on request/response paradigm and support 

synchronous communication. Web 2.0 techniques not only support request/response 

model, but also enable asynchronous communication. Thus, Web pages can handle 

events occurred similar in desktop environments. Web 2.0 methods also brought new 

components called Web gadgets that integrated to the desktop environment. Gadgets 

are easy to develop and useful tools that binds Web features to user desktop. 



 

 26

In one step further, we want to build Grid portals out of Web 2.0 widgets. Thus, Grid 

portals run as thin clients on the client side browsers. Grid gadgets will exist in public 

repositories and the users can integrate these features to their portal pages with no 

hassle. As Web 2.0 tools growing up, we need to adapt existing security methods to 

protect Grid resources without any breaches. So far Grid servers apply tight security 

policies and mechanisms to Grid services. Gadgets also should support these security 

measures to end up with integrity. 

2.3 Grid programming interfaces 

2.3.1 Java Commodity Grid Kit  

Java Commodity Grid (CoG) Kit [66] enable Grid users, Grid application 

developers, and Grid administrators to utilize, program, and control Grids from a 

higher-level framework. Java CoG Kit allow for easy and rapid Grid application 

development. It also encourages collaborative code reuse and avoids the duplication of 

effort among problem solving environments, science portals, and Grid middleware. 

OGSA Grid services are interfaced by Java CoG abstractions [62]. These 

programming interfaces have capabilities to generate proxy certificates, submit jobs, 

transfer files and make file operations. They also provide composite task submissions 

and their handling. We use Java CoG abstractions to build OGSA based Grid clients. 

2.3.2 Condor Web Services 

Condor provides a Web services interface called Birdbath [67]. Birdbath aims to 

augment some of the core Condor daemons with Simple Object Access Protocol 

(SOAP) [68] interfaces so that they can be queried and controlled through programs 
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other than the standard Condor command-line tools. This provides an XML abstraction 

of the programming interfaces that can be bound to any programming language such as 

Java. Therefore, Birdbath client stubs can be generated from the Birdbath Web service 

interface. We have built Birdbath client stubs as an API to program Condor Grids.  

2.3.3 Simple API for Grid Applications (SAGA)  

SAGA [36] defines a Grid programming API on top of Grid middleware. It aims to 

abstract Grid Middleware accesses and provide a common programming environment. 

Such Grid services are Globus, Condor [69], Unicore [35] and Secure Shell (SSH) [70] 

clients. This approach adds an additional layer in between Grid middleware and clients. 

They claim that the cost of this layer is tolerable in compare to benefit. They provide 

task processing model including DAG representation. SAGA differs from Java CoG Kit 

by providing programming language independent API.  
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Chapter 3  

Survey of technologies  

3.1 Introduction 

In this chapter we review state of the art science gateways and best practice of 

technologies. Various important specifications and industry standards exist, and these 

must serve as the starting point for our work in Grid portal area. The next sections 

summarize Grid, Grid portals, and Web services technologies. Portal frameworks and 

portlet standards are reviewed in the later sections. We then review Web application 

frameworks after Grid account management.  

3.2 Grid Portals 

Grid portals [32] are science gateways for providing scientists a problem solving 

environment in which they execute distributed Grid applications from Web browsers, 

desktop tools, or mobile devices. Grid Portals provide seamless access to Grid services 

and resources. However, as science gateway evolves, novice users are supported in 
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broad spectrum to feel the impact of Science portals. Grid portals have advantages as 

following: a) provide single point of access to distributed information and services, b) 

utilize Grid services on behalf of the user, c) endure environment changes at remote 

hosts such as policies sometimes differ and allocations of servers change. 

In early stages of building science portals, stovepipe solutions have been used to 

build Web interfaces for Grid portals. But the usage of emerging technologies among 

Grid community required them to adapt portlet component model for Grid portals. 

A number of Grid portals exist including QuakeSim portal for earthquake sciences, 

VLab portal for Material Sciences, TeraGrid User Portal [71] for managing TeraGrid 

resources and LEAD portal for atmospheric discoveries. Grid portals utilize Grid 

resources, services and data on virtual organizations. Grid portals [32] address the 

problems of building Web applications to enable virtual organizations on the Web. 

These problems can be summarized as below: 

• Security services 

• File transfer management 

• Job management 

• Accessing to metadata services 

• Resource sharing 

Grid portal efforts generally have focused on Grid portlets. Grid services are 

wrapped by equivalent client components that are called Grid portlets. Grid portlets 

generally points out solutions can be summarized below: 

• Supporting portlet development 

• Simplifying the development of Grid clients  
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• Integrating collaboration tools to support user communities 

• Developing supplemental Grid services to manage science applications and data. 

3.3 OGSA and WSRF services 

Open Grid Service Architecture (OGSA) [3] is a comprehensive architecture for the 

Grid based on Grid services and Web services. Web Services Resource Framework 

(WSRF) [60] is a set of specification by OASIS [72]. These specifications describe how 

to implement OGSA using Web services. Globus toolkit (GT) [33, 61] is one of the 

well known Grid service providers that support OGSA (GT3) and WSRF (GT4) based 

services . Virtual organizations (VO) can be built by using GT. VOs are either manages 

clusters on the systems where machines are locally located or VOs can construct a Grid 

out of several other VOs as well. The major problem of constructing Grid among 

different administrative domains is the requirement of major security policy 

enforcement. GT introduces Globus Security Infrastructure (GSI) [73] security 

mechanism that is credential based security that uses X.509 certificates. In this 

approach, there two types of certificates: 1) resource (or see terminology) certificate, 2) 

user certificate. All certificates are created and signed by Certificate Authorities (CA). 

There is CA signing hierarchy to allow different administrative domains to trust. User 

certificates are required to access VOs. Users also are registered to grid-map file which 

is an access control file for the Grid. Grid services have to comply with GSI security. 

Starting in 2001, Globus team released GT2 release and the following major releases 

respectively GT3 and GT4. GT4 services are provided on Web services framework. 

Globus services are listed as following: GRAM, MDS, and GridFtp.  
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3.3.1 Globus job management services 

GRAM service enables Linux based systems to run remote scripts by using daemons 

called Gatekeeper. Web Service GRAM (WS-GRAM) service differentiates from non 

WS-GRAM services by using ‘sudo’ accesses on Linux. GRAM service basically runs 

any command line script on behalf of the user. To abstract command line shell, they 

have introduced RSL [2] description language. The disadvantage of GRAM is to use 

socket connections that sometimes causes problems when the systems use firewalls. 

3.3.2 Globus File Management Service 

Another crucial service is to transfer files between remote hosts so called GridFtp. It 

is a FTP protocol that builds GSI security on top of it. GridFtp allows third party file 

transfers as well as file operations such as making directories, renaming files, deleting 

files etc. 

3.3.3 Monitoring and Discovery Service  

MDS provide metadata information about Grid system. In other words, MDS 

catalogs resource information with an annotation schema. This service gives users 

information about system maintenance, number of machines on the Grid, the load of 

system, available compute power, amount of data storage etc. 

3.3.4 Condor 

Condor [2] services are specialized providing compute intensive resources for high 

throughput computing. Condor can utilize Grid resources across administrative 

boundaries.  Condor-G [69] incorporates Grid technologies and provides 
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interoperability with VOs are managed by Globus. However Condor is only available 

on the shell environments and being managed by using command line scripts. This 

drawback makes Condor with platform dependent. To allow platform decoupling, they 

have used Web services and have provided Birdbath [2] services. Thus, using Birdbath 

service interface, you can generate client stubs for any platform such as Java, Python, 

and C#.  

Although Condor-G allows user submitting jobs to run on the high performance 

resources, it does not support multiple job submissions. To overcome this side effect 

they have introduce Condor DAGMan [2] to compose DAG graphs among Condor 

resources. 

3.3.5 Credential management service 

MyProxy is a credential repository introduced by [2]. MyProxy stores credentials on 

behalf of users in repositories. When user wants to use its credential, it gets the 

credential by using username password pairs different than certificate pairs. MyProxy 

prevents to type credential password frequently.  

3.4 Web services  

Web services provide a standard means of interoperability among software 

applications and frameworks which are called services. Web services interactions can 

be done using message exchanges between client and server. As a result Web services 

utilize request/response paradigm by applying Simple Object Access Protocol (SOAP) 

[68] protocol on the wire. A more general definition of Web services quoted below  
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A Web service is a software system identified by a URI, whose public interfaces and 

bindings are defined and described using XML. Its definition can be discovered by 

other software systems. These systems may then interact with the Web service in a 

manner prescribed by its definition, using XML based messages conveyed by internet 

protocols [51]. 

Web services are defined within language of Web Services Description Language 

(WSDL) [74] that is the standard Web services description language. WSDL describes 

the location of services, types of ports, method descriptions, types of messages so on. 

WSDL is a platform independent XML document which Web services clients can be 

created from. Therefore, many different clients can talk to Web service using WSDL 

description through SOAP channels. 

SOAP is a wire transport protocol on top of Transport Control Protocol (TCP) layer. 

SOAP basically provide request/response paradigm by using message envelopes. Each 

message is packaged in an envelope with a return address. Envelopes contain the 

message body. When the message arrived at the service location, SOAP engine 

encrypts the envelopes and extracts the message itself for the application.  

Web services are used in numerous distributed applications. There are services 

available all sorts of applications like industrial, commercial and academic. To discover 

available services, Universal Description Discovery and Integration (UDDI) [75] is 

defined to advertise services. The clients search through UDDI repositories to explore 

new services or similar services what they are looking for. 



 

 34

Apache Axis [76] is a useful Web services framework that runs SOAP provider and 

Web services interfaces. Axis provides tools to build and deploy services. Axis also 

provides tools for clients to generate stubs for WSDL interfaces. 

3.5 Portal frameworks and their components 

Web-based portals leverage personalized content and provide access to backend 

resources. First of all, we need to distinguish portals and portal frameworks. Portals are 

deployed instances of portal software frameworks that are adopted for specific 

application or science Grid. For instance, VLab [2] and CIMA [2] portal projects have 

adopted GridSphere as a framework, but many other Java frameworks exist, such as 

uPortal, Jetspeed [21], eXo [77], Liferay, and so on.  It is desirable to be able to 

exchange software components between portals and to be able to swap frameworks 

(e.g. GridSphere for Jetspeed2). Portal frameworks utilize various components known 

as portlets.  Portal frameworks plug these capabilities within deployment descriptors for 

these portlet Web applications. The framework provides a portlet container and portal 

specific capabilities such as login, access management, and layout. The Java JSR 168 

specification provides the means for building standard portlet frameworks and portlet 

components. 

JSR 168 defines a Java API for portlet development and provides portlet lifecycle 

management. Portlet Web applications are interchangeably used among portal 

frameworks such as GridSphere, uPortal, Jetspeed2, and others: one may use the same 

portlet Web applications without modifying the application code. Portal frameworks do 
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require portlet registration/deployment in a container specific procedure, as well as 

some container specific modifications to the Web application’s configuration file. 

JSR 168 portlets generates markups from different applications such as from 

databases, scripts and Web services. All these markup elements are shown as in HTML 

by using MVC style Web application languages like JSF, JSP, Spring, and Velocity. 

Each portlet application renders an HTML markup fragment for presentation. Portal 

framework aggregates portlet markups a unified style and display them in one Web 

page.  

3.5.1 Shortcomings of JSR 168 

JSR 168 has from our point of view several significant shortcomings.  JSR 168 does 

not standardize description of users, groups and roles. Thus, portal frameworks provide 

their own style of user and group concepts that may cause mapping problems. We have 

faced such kinds of problem with the CIMA portal. More importantly, these 

components and others are not clearly defined as Web services.  This creates problems 

when using the portal as a front end to Grids and Web service oriented science 

applications.  Another major shortcoming of the JSR 168 specification is that it does 

not provide a sophisticated development environment for creating the portlets 

themselves out of reusable components. 

A parallel effort to JSR 168 is Web Services Remote Portlets (WSRP) [78].  WSRP 

aims to support remote portlets using Web services standards. Portlets can run in the 

remote portlet container that is called WSRP producer. WSRP consumer makes 

requests on that remote portlet and gets response as HTML markup fragment. WSRP 

consumer could be JSR 168, PHP or Microsoft .NET portlets. Consuming portals only 
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get markup fragments from WSRP producer and present them in the portal page 

through WSRP Consumer. Unlike JSR 168, WSRP consumer does not render HTML 

markups.  

3.6 Grid account management 

Portals in general manage user accounts in implementation specific and usually non-

portable ways. But Grid portal user management requires handling standard Grid users 

with their credentials. Credential mapping with user identities are always issue with 

Grid portals. There are various solutions are studied by Grid community. 

Point-solution attempts to Grid authentication and authorization problem are 

available such as Grid Account Management Architecture (GAMA) [79] for Grid 

account management and Portal-Based User Registration Service (PURSe) [80] for 

Portal user management.  

Grid portlets mentioned so far assumes portal users already have Grid accounts 

available. They only issue proxies to existing Grid accounts. However, there are portal 

and Grid account management portlets handle Grid account creation and management. 

GAMA and PURSe are well known Grid and portal account management portlets in 

open Grid community. Both systems have pros and cons in terms of their designs and 

underlying technologies. Also portability of servers and user interfaces are general 

aspects to be considered. The comparison of those account systems are shown on the 

Table 3.1. 
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Table 3.1 Comparison of GAMA and PURSe 

 

Criteria PURSe GAMA 

Server 

SimpleCA has to be on 

PURSe server. 

Same with GAMA 

Communication 

Non-secure server 

communication 

Secure server communication 

User interface Standard JSR 168 portlets 

Portlets tightly integrated to 

Gridsphere authentication 

module 

Access 

PURSe server only accessible 

by local JSP pages 

GAMA server provides Web 

service access 

 

3.7 Grid authorization infrastructures 

GridShib [81, 82] is focused on attribute based authorization for Grids. It is 

combination of Shibboleth [83, 84] and Globus toolkit to enable various administrative 

domains for federation. Identity of users is carried by X.509 credentials and access to 

certain resources is determined by identity providers. Service providers always get 

permission to access the resources. They facilitated Security Assertion Markup 

Language (SAML) [85] attribute assertion model within this architecture.  

There exist external services providing single functionality like Central 

Authentication Service CAS [86] for authentication or PERMIS [87] for authorization. 
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Also those available services are not enough to enable a portal entirely service based. If 

the portal services are available, but there is no portal services coordination available 

for portals as Web or Grid services.  

3.8 Web application frameworks 

Web pages can be easily grouped into two categories, static and dynamic, when 

describing their content. Static content does not change; it is always output the same 

way ignoring any external variables. For example, HTML provides a means to serve 

static content. HTML describes the way a document should be displayed in a browser 

but provides no means to change that display. On the other hand, dynamic content can 

be influenced by external variables often passed through the URL or HTTP Headers. 

For example, Java Server Pages (JSP) provides a scripting engine that allows accessed 

pages to output different HTML based on external variables. The client-server model 

the Web uses only allows two points where dynamic content can be processed on the 

client and/or the server. Due to limitations on the client side, complex operations are 

left for server side executing. With standardizations from the World Wide Web 

Consortium (W3C) [88] client side technologies like JavaScript should work similarly 

among standard compliant browsers. Of course, many browsers do not conform to the 

standards, leading to many complications. However, JavaScript provides a common 

platform for dynamic content on client side and introduce many benefits over standard 

server-side manipulations. Most Web sites and/or Web applications employ a 

combination of client-side and server-side technologies to provide rich dynamic content 

to its viewers. 
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3.8.1 Java Server Faces (JSF) 

JSF is an acronym for Java Server Faces, which is an extension of the well-known 

and widely used Java Server Pages (JSP) [40, 89]. JSF provides an abstraction on top of 

JSP to allow rapid development of Web interfaces. Fundamentally, JSF components are 

collections of reusable JSP codes which are described by XML-like tags. 

With standard JSF add-ons it has become easy to bridge JSF applications into portlet 

applications. Such components include so-called "bridges" currently being developed 

by Apache [90] that serve the purpose of adapting JSF applications to function as 

individual portlets within standard containers. These bridges have worked to optimize 

development time of the VLab portal.  

3.8.2 Web Interfaces and JSF 

JSF is a dynamic Web application framework that similar to other dynamic Web 

application templates like Velocity, JSP and Spring. JSF provides dynamic contents 

using Java Servlet [44] technology. Dynamic contents are generated based on request 

and response paradigm. Unlike static HTML pages Web application frameworks allow 

interaction with users. The server pages take requests, process them and respond to the 

user through a Web interface.  

JSF applies MVC software design pattern [31] that decouples data, controller and 

user interface. The data corresponds to model in JSF terminology is called backing 

beans. The controller corresponds to JSF servlet that manages user requests. Finally, 

the view corresponds to Web interfaces of JSF. This architecture separates the data 

access and user interaction. Also MVC allow reusing backing beans within different 
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applications without rewriting them.  

JSF framework provides a component model that supported by user interface (UI) 

widgets in XML format to implement view pages. In contrast, JSP usually mixes and 

matches java code and html markups in the view pages. Rather JSF completely 

separates view pages and beans by using JSF core tags and html tags. Such tags are 

<f:form/>, <h:commandButton> etc. These tag instances binds attributes to backend 

beans that defined on the configuration file of the application called faces-config.xml. 

Thus, we can say that JSF uses Model2  (is a variation of MVC) pattern better than JSP. 

Model and View logics completely separated; Model is provided by using Java Beans. 

JSF Core tags and HTML tags enable developers to inject bean methods by using 

attributes.  

3.8.3 JSF Portlets  

JSF portlets are built on top of the standard portlet API (JSR 168) so that allowing 

them to be deployed within various portal frameworks. Java portlet development 

generally requires implementing portlet API within the Web application. But there is a 

tool called JSF portlet bridge that makes portlet programming easier for developers. As 

a result, developers are not required to construct their portlets using the portlet API 

directly.  

3.8.4 JSF portlet bridge  

JSF portlet bridge injects Java beans with portlet API so that there will be no portlet 

programming phase. JSF portal bridge [90] provides a servlet to deploy JSF 

applications as portlet. This bridge consumes portlet API so that deploying any stand-
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alone JSF application as portlet. JSF bridge supports MyFaces [91] reference 

implementation of JSF which may not support different reference implementations such 

Sun reference implementation.  
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Chapter 4  

Applications  

4.1 Introduction 

In this chapter, we discuss several different science gateway initiatives with 

scenarios to build a Grid portal. A science gateway building process starts with 

following demands including portability and accessibility. As matter of fact, this 

transition process is burdening in the following aspects. First, the science gateways 

must design efficient interfaces to attract users from different backgrounds like core 

scientists to elementary school students. Second, the gateways need to advertise their 

backend services and to make service interfaces available for exploration. When they 

are exposing all the services and visual interfaces, they also need to keep those services 

and its data secure. In this case, science communities need to enforce policies for user 

authentication and access control rights of the users. Our Grid tag libraries present 

solutions for these issues. 
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The “Grid tag libraries” has been used in real applications like The Virtual 

Laboratory for Earth and Planetary Materials (VLab) [15], Common Instrument 

Middleware Architecture (CIMA) [92], and Indiana University Big Red portal [93]. We 

summarize the efforts to build science gateways on the following use cases. We also 

evaluate and discuss repeated problems and their solutions sticking with these practices. 

4.2 VLAB: Virtual Laboratory for Earth and Planetary 

Materials Portal 

The VLab is a National Science Foundation-funded interdisciplinary research 

collaboration whose primary objective is to investigate planetary materials at extreme 

conditions based on computational techniques to better understand the processes that 

create earth-like and other planetary objects.  Such calculations typically involve 

hundreds or thousands of computer runs. These runs occur in stages, with complex 

interactions. They are often managed by several researchers. To address challenges in 

collaborative and distributed computing, VLab brings together a team that includes 

researchers in computational material science, geophysics, scientific visualization, Grid 

computing, and information technology. Additional information on VLab is available 

from [94]. 

Some of the many problems that VLab must address include the ability to create 

input files through portals, submit jobs, store and retrieve the job input and output data 

on demand, analyze and visualize the data, and store the data. These tasks must be 

possible in a distributed environment and the flow of information must be accessible to 

multiple collaborating researchers, although they might not be co-located. An 



 

44 

 

additional constraint on our system is that it must be robust, i.e., fault tolerant. When 

working in a complex multi-user environment, it is inevitable that some components 

will fail. However, these failures should not affect the work of an individual researcher. 

Thus, we have chosen to connect the users of the systems (referred to as clients) and the 

various tasks requested by the users (storage, visualization, analysis, job submission, 

etc.) as services using NaradaBrokering [95], a middleware system that builds in many 

of the required features.  

In its initial phase, VLab follows a well-established pattern for building Grids: 

application codes on remote machines are accessed securely through Grid services 

through a browser portal.  This follows the common three-tiered architecture.  A user 

interacts with a portal server through a Web browser.  The portal server in turn 

connects to remote Grid services that manage resources on a backend system that 

provides the computing power for running the codes. The longer term research goal 

however is to go beyond these traditional approaches.  The distinguishing feature of our 

research is the use of the publish/subscribe paradigm, which completely decouples the 

clients from the services. Users have no knowledge of the resources allocated to their 

requests, although they will have the capability to monitor task progress. 

The VLab science gateway is based around the JSR 168 portlet model, and the initial 

set of VLab portlets are described in detail in [15]. We began by developing Grid 

portlets using the OGCE [27] software. In this model, each portlet application was 

responsible for an individual task. For example, one portlet is used for submitting jobs 

to PWSCF resources, another one is for GridFtp file operation, and a third is to get Grid 

credentials from MyProxy [59] repository. This traditional approach is not useful for 
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the case of VLab. Instead, we need to collect all capabilities within a single portlet 

application and to handle complicated PWSCF-based job executions and file transfers 

in a sequence; that is, we must define dependencies between atomic job tasks. 

Consequently, we have determined that we can represent job dependencies using 

DAGs.  

To implement these graphs, we chose the Java CoG abstraction [62] interfaces for 

DAG executions in Grid. These provide a convenient Java programming interface that 

can be easily integrated into Java portlets.  However, we identified the need to provide 

a higher-level development environment that encapsulates common tasks needed to 

assemble a DAG in a portlet.  Our approach is to design XML-based tag libraries for 

expressing DAGs and to embed them in the Web pages. For that reason, we found the 

JSF application framework to be appropriate. JSF is a component-based Web 

framework that can be extended to add new components, such as our DAG XML tags. 

As we discuss in this paper, we have implemented and have used initial prototype of 

Grid tags within JSF. In case of VLab portal, we have learned that we need a more 

comprehensive workflow engine to support loops, parallel jobs and conditional 

branches.  

Figure 4.1 shows the flow control of end user and portal resource interactions. End 

users login to VLab portal securely and then store their Grid credentials to access Grid 

services. While these processes are initiated by end users, all of the events are 

persistently stored on Metadata server. 
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Figure 4.1 VLab portal serves to the end users by utilizing remote resources. 
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4.3 QuakeSim Portal 

The QuakeSim portal is a problem solving environment to develop a solid Earth 

science framework for modeling and understanding earthquake and tectonic processes. 

The multi-scale nature of earthquakes requires integrating many data types and models 

to fully simulate and understand the earthquake process. The QuakeSim gateway 

includes portlets and services for accessing real time and archival data.  The data 

sources (Global Positioning System data, earthquake fault models) can be integrated 

with computational applications for event detection and seismic deformation 

calculations.  These latter include finite element methods (GeoFEST [50]) that can be 

computationally intensive and best run on parallelized platforms. In this study, we aim 

to utilize TeraGrid [4]resources to solve computational problems of QuakeSim project 

[96]. 

The QuakeSim portal has served the community since 2002 and is currently 

undergoing several major revisions. In terms of using the portal frameworks, it initially 

used the Jetspeed framework.  It has subsequently been updated to use the standard 

compliant, second generation portal framework GridSphere, which is compatible with 

JSR 168 portlet specification. In its current form, the QuakeSim portal uses portlets 

developed with the JSF Web application development framework. JSF is component 

and tag based, and allows extensions.  QuakeSim portlets are typically designed as 

clients to remote Web services that constitute the QuakeSim middleware. These portlets 

aggregate user information and data through JSF interfaces and invoke the actions 

matching the Web services. QuakeSim services use Apache Ant [97] based services to 
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manage jobs and to build multiple steps of jobs that depend each other (i.e., to handle 

simple workflows). 

QuakeSim’s computational services are suitable for many of its applications, but it 

must be extended to support more extensive computations for parallel applications. 

Grid services of TeraGrid (e.g., Globus, Condor) provide this capability, so we need a 

way to modify existing JSF-based portlets to work with these services. To simplify this 

transition and to provide test cases for our GTLAB framework, we decided to combine 

the two efforts. 

We describe the application of GTLAB to QuakeSim as a case study. In this case 

backend applications run on TeraGrid and we access these legacy applications with 

GRAM, GridFtp, MyProxy services. We will show the integration and implementation 

of Disloc and Simplex portlets with GTLAB. We also evaluate development time and 

runtime performance results based on the tests that we conducted on different 

geographical locations. 

4.3.1 QuakeSim Gateway Architecture 

QuakeSim portal architecture was previously designed for Web services invocations 

in the middleware. These portlets aggregate user information and data through JSF 

interfaces and the actions invoke matching Web services methods. QuakeSim services 

utilize Apache Ant-based services for managing executable invocations, interacting 

with the operating system, and controlling simple workflows.  Ant build scripts serve as 

templates for defining the operations of a particular application service.  These server-

side Ant build scripts can be converted into portlet-side GTLAB XML tags. 
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Instead of altering QuakeSim service interfaces synchronizing with Grid services, 

we remove the Web services layer. Therefore we use Grid services to invoke remote 

applications, to make file transfers and to provide security. However, we also need to 

allow implementing workflows within the scope of QuakeSim scripts. In other words, 

we are able to translate Ant scripts to series of Grid service invocations that are 

represented as graphs. This new approach has advantages to the previous architecture. 

First, there is no need to alter service interfaces when the Ant scripts change. Second, in 

the previous system, service clients cannot access the service layer to change scripts. 

Therefore the clients have to request required changes that involve additional 

management efforts as well.  

Enabling QuakeSim portlets such as the Disloc interface to work with GTLAB 

requires a few changes on the portlet pages. First of all we preserve all JSF pages that 

collect information from users such as input forms and parameters. Next, we replace 

the JSF form page that invokes QuakeSim Web services with Grid tags. Therefore the 

embedded Grid tags that are invisible to the end users will call Grid services by using 

Grid beans. As a result of these simple changes we gain from development time. 
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Figure 4.2 QuakeSim portal architecture with Grid services invocations of TeraGrid nodes. 

As shown in the Figure 4.2, QuakeSim architecture utilizes GTLAB to access 

TeraGrid nodes. We customize portlet pages to connect which TeraGrid nodes 

beforehand. Therefore end users would not worry about TeraGrid availability. It is also 

possible to involve the end users in the node selection stage. In which case, users have 

to be knowledgeable about the nodes. In our design, users get their MyProxy 

credentials before using any other Grid service. Then they can use one of the services 
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such as GRAM for invoking applications or GridFtp to transfer files from one server to 

another. 

4.3.2 QuakeSim Portlets 

QuakeSim portal previously built and production with different technologies. In this 

case study, we rebuild QuakeSim portal with Grid portlets by integrating GTLAB. 

Therefore, we choose GridSphere portal framework to build QuakeSim portal. In the 

building process we provide portlets for QuakeSim applications including Disloc and 

Simplex.  

<o:multitask id="multi" persistent="true" 

taskname="#{resource.taskname}"> 

<o:myproxy id="mypr" hostname="gf1" lifetime="2" 

password="manacar" port="7512" username="manacar"/> 

<o:jobsubmit id="make" arguments="/home/manacar/disloc-

work" executable="/bin/mkdir" 

hostname="gf1.ucs.indiana.edu" provider="GT2" 

stdout="/home/manacar/tmp/out-make"/> 

<o:jobsubmit id="disloc" 

arguments="/home/gateway/GEMCodes/Disloc/input.txt 

/home/manacar/disloc-work/disloc.out" 

executable="/home/gateway/GEMCodes/Disloc/disloc" 

hostname="gf1.ucs.indiana.edu" provider="GT2" 

stdout="/home/manacar/disloc-work/out-disloc"/> 

<o:dependency id="dep" dependsOn="make" task="disloc"/> 

</o:multitask> 

 

Figure 4.3 Disloc portlet page contains multi-staged jobs with DAG representation 

4.3.2.1 Disloc Portlets 

Disloc models multiple dipping dislocations (faults) in an elastic half-space. In the 

view of portlet development, Disloc is an application that we need to run by providing 

parameters and input files. Disloc run on TeraGrid and the users either can by using 
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command-line tools or shell scripts. But portal users can only access by using Grid 

services to access TeraGrid in a secure way.  

 

GTLAB provides a client layer on top of Grid services that is bridge to the portal 

users. In other words, the portal users can access Disloc transparently through portal 

user interfaces (i.e., Web forms). Not only using an application is possible, but also a 

DAG could run the multiple steps of Disloc such as in Figure 4.3 making a directory on 

the file system to save output file, then running Disloc application that depends on the 

first task. 

4.3.2.2 Simplex Portlets 

Simplex is an inversion code based on Disloc. Similar to Disloc, Simplex 

applications are run by DAGs that describe order of the tasks and their dependencies. 

Then JSF pages collect parameters and information about the task to submit it to 

TeraGrid. 

 

4.4 CIMA: Common Instrument Middleware Architecture 

Portal 

One of the key issues in developing shared instrument systems is how to create an 

open and flexible approach to user interfaces for access to instruments and the data 

streams coming from them. In related work [98] we have described how portals can be 

used to organize access to instruments through the Common Instrument Middleware 

Architecture (CIMA) [99, 100] and how individual portlets can provide specialized, 
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role and task specific functionality as users, technicians and system administrators 

interact in the generation, analysis and management of data from shared instrument 

resources. In this paper we will focus on the approach taken to develop portlets for 

managing crystallographic data in a group of cooperating laboratories. 

X-ray crystallography is an analytic technique to help scientists understand and 

determine the precise molecular structure of a crystalline substance. However the 

instruments (called X-ray diffractometers [101]) required to perform these types of 

studies are quite expensive and require a highly trained operator. The relevant data 

from a crystallography experiment contains a series of diffraction images usually 

captured by a CCD detector, and a number of environmental variables including crystal 

temperature, crystal alignment image, CCD cooling status, and the temperature and 

relative humidity of the lab.  

In some cases, due to the nature of some crystalline materials such as proteins or 

microcrystalline compounds, the successful structure determination of these 

compounds require the use of high brilliance radiation sources available at national 

synchrotron facilities. Gaining access to beamlines at these national synchrotron 

facilities to collect data is not straight forward. Travel to these remote facilities is costly 

and time consuming, and once there, the facilities must be used in an intensive manner. 

By developing methodologies to remotely monitor and access instruments and their 

data we can provide the remote users with a “same as being there” experience with 

additional flexibility in scheduling around problem samples and equipment failures. 

Additionally on-site users and technicians can share data coming from the beamline’s 

instruments with remotely located colleagues to discuss the quality of a diffraction 
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pattern. This remote consultation capability can facilitate decision making such as 

continuing with a questionable sample or abandoning it and starting a new one. 

Effective shared access to instruments ensures a more efficient use of the beam time, 

potentially improving throughput of the beamline as a whole. This paper will focus on 

the implementation details of the CIMA crystallography portal and the mapping of end-

user functional requirements to portlets. 

Grid tags are also being developed for use in CIMA crystallography portal.  CIMA 

provides access to X-Ray crystallography, instrument and sensor data.  Sample data 

includes CCD images of crystals as well as laboratory conditions such as temperature 

and humidity. The CCD images may also be post-processed.  One of the post-

processing applications used is SAINT [102], used to integrate CCD image frames, sort 

reflection lists, scale, filter, and merge reflections. In this case, crystallographers launch 

a SAINT application using multitasks to initiate an image analysis. This process results 

in image files that are being downloaded to a portal server and are made available for 

users. 

4.4.1 Requirements 

For the current work, a subset of requirements relating to user and administrative 

interaction with data was chosen. These include the following: 

� Remote users and in-lab crystallographers must be able to monitor an experiment in 

progress, including viewing current and previously collected CCD frames and 

associated relevant  environmental and technical parameters; 
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� All raw data is owned by the lab which performed the experiment and collected the 

data. In addition to the lab, represented by one or more lab administrators, 

individual users can view (but not modify or delete) their samples; 

� Lab administrators must be able to control sample ownership and visibility; 

� Because the notion of when an experiment ends is not clearly defined (e.g. 

experiments may be truncated after the fact or additional frames may be gathered 

based on evaluations made during a run), lab administrators should be able to set 

the end time of an experiment; 

� Lab administrators must be able to add and remove users to an access control list 

for a sample;  

� Users must be able to view their samples, including all files and sensor readings 

related to the experiment; 

� Some sample data may be provided to the general public for educational or public 

science awareness purposes; 

� Users must be able to view the current status of the lab as a whole; 

� Individual functions that are of general utility should be implemented in a reusable, 

pluggable, standards-based manner as portlets that can be added or removed by 

administrators or end-users as appropriate; 

� The portlets must interact with a lab’s data manager software via Web services 

calls; 

� Users and groups will be managed by the portals container and access to all 

functions of the portal will be provided by a single sign-on through the portal. 



 

56 

 

A prototype implementation of the crystallography portal was completed using 

Jetspeed1 and CGI scripts. Although in the right direction, this implementation did not 

meet our modularization requirement and so with the ramp-up of the NSF middleware 

project and the availability of support from the OGCE group, we migrated to 

GridSphere and JSF-based portlet clients to CIMA services as a fully JSR 168 

compliant portal container. This assures a degree of survivability and lateral flexibility 

to move the science process specific functionality to other containers if the need arises. 

The requirements outlined above led us to develop the following portlets: 

� A lab overview portlet that provides the current status of a facility and its 

instruments; 

� An administrative Admin portlet to support management of sample ownership 

and other parameters related to individual experiments; 

� A PublicSample portlet that provides sample data to all portal users and the 

general public;  

� A UserSample portlet that shows a logged-in user their samples and other 

samples on whose access control lists they appear. 

PublicSample and UserSample portlets also allow users to scan through all data 

objects in an experiment. Per design choice some functions of the portlets are made 

available as pop-up windows. These portlets provide all of the functionality listed in the 

requirements above. Extensions to the portal’s basic group authorization mechanism 

provide an access control list associated with each data collection. Scientists can view 

and modify sample data from their X-ray diffraction crystallography experiments based 
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on their roles in this project and can add users to the access control lists of their data 

sets. Nothing more than a web browser is needed to interact with the system.  

4.5 Big Red Portal 

Big Red is a major new TeraGrid resource and one of the most powerful computers 

in the world.  As with all TeraGrid resources, it runs the Coordinated TeraGrid 

Software and Services, which includes Globus services.  One of Big Red’s initial 

applications is Mutiple EM for Motif Elicitation (MEME) [103]. MEME is used to 

discover common motifs in groups of DNA or protein sequences. Due to its 

computational complexity, MEME should be executed in a rich resource environment 

such as Big Red. However, to execute MEME on Big Red, a user must not only be 

familiar with the application itself: he or she must also understand various network 

tools such as FTP for uploading and downloading input and output files, and he or she 

must understand Big Red’s LoadLeveler and MOAB-based scheduling and queuing 

system in order to submit, monitor and control jobs. This kind of inconvenience can be 

easily overcome by making a specific portlet that allows a user to execute the MEME 

application by using a science portal based on the OGCE [27]. In addition to MEME 

execution, we can add file management and job control functionality into the portlet by 

using Java CoG kit to utilize Big Red’s Grid infrastructure.  

Portlets provide a common component for building portals out of reusable parts.  For 

example, as mentioned previously, the OGCE portal has portlets for job submission, 

credential management, and file management that can be plugged into any standard 

compliant container.  Often, however, as in the case of the MEME portlet described 
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above, portlets are not quite fine-grained enough components. We would like to build 

portlets that combine several Grid operations in the same portlet. Our work on GTLAB 

provides a set of JSF tag libraries and backing JavaBeans (called Grid beans) that 

attempt to solve this problem.  A full discussion of JSF is out of scope here, but briefly, 

JSF generates HTML from a set of XML tags.  HTML form actions are associated with 

so-called backing JavaBeans, which in turn may act as Web service clients or connect 

to databases.  Developers can extend these libraries to provide their own XML tags. 

The goal of GTLAB is to simplify the process of Grid portlet development by 

encapsulating common Grid operations as XML tags that can be embedded in portlet 

pages, enabling rapid development. GTLAB capabilities include credential 

management, remote file operations, remote job executions, and file transfers.  

The JSF Web application framework provides us with extensible component 

architecture. Each XML tag is associated with a backing Grid bean that implements the 

actual Grid clients, which we build with the Java CoG kit.  We use JSF’s built-in 

functionality to pass attribute values from the XML tags to the backing beans.  Grid 

beans are associated with Grid tags and their action methods are fired by our 'submit' 

tag. Tracking the jobs and monitoring is also part of the GTLAB framework.   

4.5.1 Integrating GTLAB with Big Red Portlets 

Typically a Grid portlet stages various related tasks in response to a user-generated 

event.  These are usually the nodes of a DAG, which our Grid tags are designed to 

support.  The DAG, or composite task, is called multitask in GTLAB. Currently, 

multitasks only allow dependent task units and prevent parallel tasks and cycles. 
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After building the sub-tasks, multitask and their dependencies, GTLAB then registers 

multitasks in the browser session. In addition, it registers their handler information 

within the session to track their lifecycle. All of the objects are stored in hash tables 

with a unique key. The job handler information can be stored persistently to a backend 

storage system (i.e., a database) by setting persistent attribute of multitask.  

The following scenario shows the building of multitask for MEME with dependent 

multi-staged tasks. Assume a developer has been assigned the job of creating a portlet 

to do the following basic tasks.  First, Task A makes a working directory on Big Red. 

Then, Task B transfers an input file from a remote host to the newly created directory.  

Finally, Task C is responsible for submitting a command script on Big Red using the 

input file. The following sections explain the scenario in detail through the use of Grid 

tags.  After the portlet is finished and deployed, users will then submit and monitor jobs 

using the developer’s portlet.  Users will not see the tag libraries and will interact with 

standard HTML pages that get generated when the portlet is rendered. 

4.6 Summary 

We have summarized the Grid portal efforts of scientific communities including 

VLab, CIMA and Big Red. These uses cases have shown that similar issues and 

solutions are applicable to different community requirements. Our generic Grid tags 

have been applied to these portlets by adjusting configuration and customization 

principles for each case. Therefore we have saved development time for each portal.  
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Chapter 5  

Architecture of Grid Tag Libraries  

5.1 Introduction 

We aim to provide a set of Grid tags in JSF that can be used to build Grid portlets. 

We have described our tag libraries, called Grid Tags Libraries and Beans (GTLAB), in 

[48] that provide common Grid capabilities such as proxy credential management, job 

submission, file operation, and workflow by means of multi-staged tasks. Grid tags are 

associated with Grid beans to access Grid services. Grid bean methods are bound to 

tags with attributes. These can then be used to simplify the building of new Grid 

portlets.   

 

Figure 5.1 shows the general picture of science gateways and where we locate the 

GTLAB within this big picture.  In this architecture, Grid portlets are built using JSF 
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Grid tags. Grid tags and beans use local services on the portal server such as bean 

repository, listener repository and MyProxy repository. 

 

Figure 5.1 Big picture of Grid portlets using GTLAB libraries and JSF framework 
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5.2 Design 

Grid portlet programming is a burdening process for application developers. GTLAB 

provides several important features for application developers.  First, it provides 

modular components (tags and beans) to construct science gateway portlet pages. 

Second, it represents Grid service clients using abstract XML tags. Therefore, portal 

developers do not need to understand underlying details of Grid services. Finally, it 

provides a component model for developing Grid portlets out of reusable parts.  

 

 

 Figure 5.2 Grid tags are embedded into JSF view pages with visual HTML tags 
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The design of GTLAB requires three essential parts: 1) Grid tags and 2) Grid beans 

3) Session management. These components are explained in greater detail in the 

coming sections. 

Figure 5.2 shows a JSF view page that builds a Grid job submission portlet page by 

using Grid tags. The portlet page contains a Web form, input and output text fields and 

submit button. JSF view pages are built and rendered by JSF container to construct 

HTML pages. So JSF page is different than what you see in the browser’s resource 

page. Basically XML based tags are built the view page. We’re using core, html and 

Grid tags to build a Grid portlet page.  

The Grid tag components on Figure 5.2 also bind Grid bean features to call 

appropriate Grid service client. Grid beans are using underlying Globus, Condor and 

Taverna [104] services by abstracting their client APIs to work with Grid beans.  

Grid beans and listener information are managed by session manager. Session 

manager basically keeps track of every submitted Web forms in the portlet page and 

identifies them with unique ids within a user (e.g. browser) session. 

Application developers only plug these tags into their portlet applications and add 

required libraries to their Web applications to enable GTLAB. There are only simple 

settings to customize GTLAB within the portlet application.  

We have used the strategy of returning immediate results to the user such as passing 

the control to the next page since Grid operations can take a long time to complete. 

Thus, a user submits the job in one page and is not required to wait until the job 

finishes. Instead, users are able to monitor their jobs in another page. To maintain this 

scenario, either we need to keep callbacks for each job or to store listeners for each job 
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in the servlet HttpSession object. We have therefore used CBB that take care of each 

request in the session. Then we stored bean instances and their listeners into tables 

(Hashmap) among the session with taskname key. The taskname key is created by 

putting the user-defined taskname (collected from Web form input) and the timestamp 

together to provide a reasonable ID.  

Figure 5.11 illustrates the user interaction with the Grid beans and tags are 

illustrated. When user hits a submit button, CBB takes control. First, CBB constructs a 

multitask with the components that defined by the Grid tags. CBB also responsible for 

submitting the multitask and for managing the lifecycle with associated listeners. After 

the submission is completed, control is passed to MonitorBean shown on the right. 

MonitorBean interacts with the session to retrieve the information of submitted tasks. 

5.3 Grid tags 

Grid services are interfaced by Java CoG abstractions. These programming 

interfaces have capabilities to generate proxy certificates, submit jobs, transfer files and 

make file operations. They also provide composite task submissions and their handling.  

JSF technology helps to build user interfaces based on an object-oriented component 

approach. JSF tags are built from Java classes that can be extended using JSF 

component model. New components derive from JSF base component classes. Each 

component should define its attributes, which can bind values, methods or actions. A 

full discussion explaining how to extend JSF components is beyond the scope of this 

paper.  We recommend [105] for a tutorial on this subject. 
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The main goal is to make Grid portlet development easier by encapsulating standard 

Grid operations with JSF tags.  These tags can be assembled to create composite tasks. 

In traditional Web frameworks such as Velocity and JSP backing bean objects and 

HTML tags are mixed within the server pages. Instead JSF eliminates this intervention 

by proposing JSF tags that separate backing bean and server pages. 

5.4 Grid tag schemas 

JSF Grid tags are defined in the Java based tag libraries and supported by JSF 

backing beans. JSTL tags are basically in the XML format. Tags and their attributes are 

predefined within .tld files. We can define optional attributes besides required ones. 

Also we can define tags in nested structure as in XML. Figure 5.3 shows the XML 

schema of <o:multitask> that may <o:myproxy>, <o:filetransfer>, <o:jobsubmit>.  

Table 5.1 shows the attributes of <o:multitask> tag with denoting which attributes 

are required. Similarly, Table 5.2 shows the attributes of <o:myproxy> tag. Further 

information about tag tables can be found at Appendix B. 

Grid tag schema is extensible for new tags and attributes. For example, we have 

added <o:scufl> and <o:condor> tags later to support Taverna workflows and Condor 

Grid services. Similarly, we have added persistency feature to available services by 

adding persistent attribute to all Grid tags.  
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Figure 5.3 Grid tags schema for job submission to GRAM server 

5.5 Use case example 

Typically a Grid portlet must do several related tasks in response to a user-generated 

event.  These may be thought of as simple workflows. These workflows can be 

considered the nodes of a DAG, which are Grid tags are designed to support.  The 

DAG, or composite task, is called multitask  in our approach. Multitasks only allow 

dependent task units and prevent parallel tasks. Figure 5.4 shows a multitask with tasks 

and their dependencies. In this example, Task A makes a directory. Task B transfers an 

input file form a remote host to newly created directory, and Task C is responsible for 

submitting a job on the remote computer. When Task C completes, Task D transfers 

output file to another location. The following explains the scenario in detail through the 

use of Grid tags. 
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This example demonstrates a composite Grid task with Grid tags. The JSF snippet 

below (Figure 5.6) shows how a portlet developer would create a custom Grid portlet. 

First, a myproxy tag generates a proxy credential form gf1.ucs.indiana.edu 

MyProxy server. Second, using this credential, it makes a directory on the TeraGrid 

resource cobalt.ncsa.teragrid.org. Third, it transfers an input file called 

input_file from gf1.ucs.indiana.edu  to cobalt.ncsa.teragrid.org.   

Forth, it then executes a script called execute. When the execution is completed outputs 

are written to the file named result. If an error occurs it is also written to the file named 

error. Finally, result file is transferred back to gf1.ucs.indiana.edu. 

 

 

Figure 5.4 A typical multistage Grid job involves four sub-tasks: moving an input file to a 
particular execution host, submitting the job, and moving the output to a storage host. 
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The <%@taglib uri="http://www.ogce.org/gsf/task" 

prefix="o"%> tag is used at the top of the page to define the custom tags called 

with the “o” namespace. Application developers must define Grid operations in a Web 

form. The <o:submit> tag is a submitting button for the composite task that is bound to 

a JSF action method. The <o:multitask> defines composite task and <o:dependency> 

defines their dependencies. The tasks <o:myproxy>, <o:fileoperation>, <o:filetransfer> 

and <o:jobsubmit> are unit tasks for this composition. The dependency tags indicate 

that taskA must complete successfully before taskB will run, taskB must complete 

successfully before taskC can be run and taskC must complete successfully before 

taskD could run.  Complete XML schema specifications of Grid tags can be found at 

[106]. Each Grid tag is associated with UI component and tag class that is explained in 

great detail in the next section. 

5.6 Design and Implementation of Grid tags 

Grid tag libraries are built using JSF custom component development techniques. A 

standard JSF tag requires at least two classes to be implemented: the ComponentTag 

and IUComponent classes must be extended. Tag names and attributes have to be 

defined in a tld file and this file is added to web.xml. Component names and classes are 

defined in faces-config.xml. A full explanation of JSF custom tag development is 

available from [105].  

Custom component classes extend the UIComponentBase class and are normally 

associated with HTML or other rendered widgets (input fields, buttons, etc.) in the user 

interface. We have implemented several custom UI components, including UISubmit 
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and UIMultitask, as discussed here. Components can access a map (specifically, a 

java.util.Hashmap) of attributes and child components. If the component is visual like 

UISubmit (which we associate with the HTML <submit> button), it also implements 

encoding and decoding methods to process HTML markup. If the component is non-

visual (i.e. does not need to be converted into HTML), it is associated with a null 

renderer. UIMultitask class is a non-visual component. In addition, the JSF 

ComponentTag class extension has to implement release(), setProperties(), 

getComponentType(), and getRendererType() methods. The setProperties() method 

binds attribute values and methods to the associated UIComponent.   

In JSF, the tags and attributes are used to render displays and communicate attribute 

values (see Figure 5.6).  We encapsulate the actual logic of the page (associated with 

user button clicks) in several beans that are called by the UISubmit’s action method.  

Besides tag and component classes, there are core beans as following: 

• ResourceBean: A general bean to collect property values used in JSF form 

pages. By default it loads property values from a resources.properties file. 

5.7 Handler tag manages monitoring of the jobs 

Grid tags launch Grid operations. Keeping track of lifecycles and archiving are also 

important aspects of Grid portlets. Thus, we define a <o:handler/> tag in Figure 5.5 that 

provides capabilities allowing users to manage lifecycles manually such as canceling, 

suspending, and resuming the jobs. The <o:handler> tag is visual and it is rendered as 

HTML button. The session tables only persist until the servlet session expires or 

terminates. So we need to have mechanism to persistently preserve them in a permanent 



 

70 

 

storage. The persistent attribute of the multitask tag switches archiving on and off (see 

Figure 5.6). A context server [15] provides archival facilities that store bean values and 

the status in a structured way. 

<f:view> 

  <h:form id="first" > 

    <h:dataTable value="#{tasklist.tasks}" var="task"> 

      <h:column> 

        <f:facet name="header"> 

          <h:outputText value="Handler" /> 

        </f:facet> 

        <o:handler id=”delete” action="#{monitor.cancel}" >           

         <f:param id="task" name="taskname" value="#{task}"/>        

        </o:handler>  

      </h:column> 

    </h:dataTable> 

  </h:form> 

</f:view> 

Figure 5.5 The handler tag is used with <h:dataTable> to create a table of tasks and enable 
cancellation actions. 

Figure 5.11 illustrates the user interaction with the Grid beans and tags are 

illustrated. When user hits a submit button, CBB takes control. CBB first constructs a 

multitask with the components defined by the Grid tags. CBB also submits the 

multitask and manages its lifecycle with associated listeners. After the submission is 

completed, control is passed to MonitorBean shown on the right. MonitorBean interacts 

with the session to retrieve the information of submitted tasks. 
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Table 5.1 Attributes of multitask tag 

Attribute name Required Description 

id yes String: component id 

taskname yes String: task name is for multitask 

persistent no String: stores task information  

handler no String: defines bean method to submit this 

component 

 

Table 5.2 Attributes of myproxy tag 

Attribute name Required Description 

id yes String: component id 

hostname yes String: myproxy server name 

port yes String: myproxy port number (default is 7512) 

lifetime yes String: myproxy lifetime (default is 2 hours) 

Username yes String: user name for stored credential 

password yes String: password for stored credential 

handler no String: defines bean method to submit this 

component 
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5.8 Grid Beans 

Grid tags and beans work together to perform Grid tasks. Grid tags provide the JSF 

components for Grid applications, while Grid beans provide the business logic of Grid 

applications. We have implemented Grid beans in a generic and standard way to 

support underlying Grid technologies. We have also attempted to design our tag 

libraries to support other Grid bean implementations. The Grid beans are generic tasks 

that may be extended using other toolkits besides Globus. For example, the 

JobSubmitBean for job submission uses Globus resources in our implementation. 

Developers can create their own beans with other toolkits.  For example, Condor can be 

used for job submissions rather than Globus.  However, this requires that Grid bean 

method names should be standardized and required bean methods has to be provided. 

For example, actions methods should  be called submit in all beans. Parameter names 

should also be consistent throughout the beans e.g., hostname, provider, username and 

executable etc.  
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<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%> 

<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%> 

<%@taglib uri="http://www.ogce.org/gsf/task" prefix="o"%> 

<f:view> 

   <h:form id=”myform” > 

      ....... 

      ....... 

      <o:submit id=”test” action=”next_page” /> 

         <o:multitask id=”mytask” taskname=”test” persistent=”true” > 

            <o:myproxy id=”proxy” hostname=”gf1.ucs.indiana.edu” port=”7512”      

                       lifetime=”2” username=”manacar” password=”******” /> 

 

            <o:fileoperation id=”taskA” command=”mkdir”  

                            hostname=”cobalt.ncsa.teragrid.org”  

                            path=”/home/manacar/tmp/” /> 

 

            <o:filetransfer id=”taskB” 

from=”gridftp://gf1.ucs.indiana.edu:2811/home/manacar/input_file” 

to=”gridftp://cobalt.ncsa.teragrid.org:2811/home/manacar/tmp/input_file” /> 

 

            <o:jobsubmit id=”taskC” hostname=”cobalt.ncsa.teragrid.org” 

                         provider=”GT4” executable=”/bin/execute” 

                         stdin=”tmp/input_file” stdout=”tmp/result”  

                         stderr=”tmp/error” /> 

 

            <o:filetransfer id=”taskD” 

from=”gridftp://cobalt.ncsa.teragrid.org:2811/home/manacar/tmp/result” 

to=” gridftp://gf1.ucs.indiana.edu:2811/home/manacar/result” /> 

 

            <o:dependency id=”dep1” task=”taskB” dependsOn=”taskA” /> 

            <o:dependency id=”dep2” task=”taskC” dependsOn=”taskB” /> 
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            <o:dependency id=”dep2” task=”taskD” dependsOn=”taskC” /> 

  

         </o:multitask> 

      </o:submit> 

 

   </h:form> 

</f:view> 

Figure 5.6 Grid tag libraries are used to build a sample Grid portlet page. 

• MyproxyBean: This bean generates user proxies and stores the Grid credential 

in the session. 

• JobSubmitBean: Executes GRAM job submissions. 

• FileOperationBean: Performs common file and directory operations like rm, 

mkdir, put, get 

• FileTransferBean: Transfer files among GridFtp servers 

• MultitaskBean: Creates composite tasks and execute them. 

Note that these are independent of the JSF framework.  The Grid tag libraries shown in 

Figure 5.6 are built from these, as we describe in the next section. 

5.9 Session Management 

Portal systems work on Web browsers and maintain the browser features using 

session cookies. Cookies provide communication in between the user and tomcat 

server. HTTP protocol only allows one-way asynchronous communication. Cookie 

basically gets a unique user id for each user session and keeps these IDs in the server 

side to maintain lifecycle of the user interactions within request/response systems.  
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There several case we need to handle with portal users including: 1) Many user from 

many different computers. 2) One user logs in from different computers 3) One user 

opens up many browser pages from the same computer. 4) One user within the same 

browser session makes many requests. Most of the cases listed above are handled by 

Web server or Web container (e.g. Apache Tomcat). The last part is that we need to 

handle in the system. Because there is no way for handling such cases in Web servers. 

We have designed session management architecture to keep track of many requests and 

their responses within a user session. It can also maintain information to failures and 

history of the user.  

Session manager basically keeps track of every submitted Web forms in the portlet 

page and identifies them with unique ids within a user (e.g. browser) session. The 

manager assigns an id for each request and keeps them in a bean repository. Also 

session manager saves handler information within the listener repository.  

5.10  Caching 

Portals provide convenience to the people and reduce redundancy of tasks and gets 

quicker responses to the typical requests. To end up with an elegant solution to quick 

response times, caching is important aspect of GTLAB. On the client side of the Grid 

services, in other words, portal server (e.g. comprehensive client application) provides 

a caching mechanism. There are certain cases that caching is required including the 

following: 1) Client cache would keep the latest input parameters of jobs and display 

them when the submission page is accessed later on. 2) Getting job tracking 

information is a time consuming process. To reduce response time for the user, GTLAB 
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internally keeps track of the jobs periodically. So it can show the tracking list on 

demand from the cache. User sessions (e.g. browser sessions) do not take so long. So 

caching makes sense for most of the cases. 

In case of GTLAB caches, there is no shared session in between the users. Each user 

manages its own session. The advantage of this limitation is that does not cause 

inconsistency. These types of caches are considered as monotonic read [107]. As result, 

we should not apply coherence detection policies.  

5.11  Synchronous and asynchronous 

Typical HTTP requests are synchronous. So all the events occurred in GTLAB are 

considered as synchronous. However, backend job processing is not always 

synchronous. In most of the cases, jobs go into a batch queue, and results pulled by the 

client which is asynchronous. GTLAB jobs usually take longer time to finish than a 

user session expires. As a result, portal server should catch responses from the backend 

and store them in the storage. In this case portal server runs an intermediary module to 

manage lifecycles of the jobs beyond the user sessions. Alternatively, job handlers to 

submitted jobs are stored for future references. Whenever the jobs are done the handler 

is used to retrieve regarding results and status information. 

5.12  Architecture 

ResourceBean, MonitorBean and ComponentBuilderBean are managed by JSF’s 

session handling mechanisms and are declared in the faces-config.xml file. CBB is not 

normally used directly by developers in their JSF pages. They instead interact with this 
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object through Tag libraries. Application developers can directly use ResourceBean and 

MonitorBean to build up pages. 
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Figure 5.7 Shows architecture of ComponentBuilderBean and its components 

Figure 5.7 shows the architecture of components. In this diagram, bean and listener 

tables are in the HttpSession and tables store bean and listener objects in a Hashmap. 

CBB handles user requests on the server side using Grid bean property values provided 

by ResourceBean. The actions are fired off by the Grid submit tag that is bound to the 

submit method of CBB. Its action listener catches the event and calls required methods 

to parse custom components. FactoryBean then constructs corresponding sub-tasks. 

Next, CBB constructs a taskgraph using MultitaskBean. CBB adds child components 

which are Grid beans and their dependencies. It then submits the taskgraph and passes 

the control to the submit button’s action attribute. The JSF engine handles the value of 

the action attribute, while a navigation rule points to the destination page based on the 

attribute value. 
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The above classes (particularly the Factory Bean) are designed to accommodate a 

common use case in Grid portlets that is not handled well by JSF: we need to construct 

many beans for encapsulating many submissions by a single user in a single session. 

JSF manages the sessions (lifecycle) of beans but these are statically configured in 

faces-config.xml, so we need an approach to create and manage lots of Grid beans. We 

must also address a disparity of time scales: JSF event processing may take 

milliseconds, while the corresponding backend action may take much longer. Our 

solutions are described in the following section.  

5.13  Component Parser 

Component parsing based on Faces context components. Component parser 

processes JSF components to extract GTLAB widgets. After that attributes of each Grid 

tag are extracted. In the final stage, if the attribute values are not static values then 

value binding is performed. 

 

 

Figure 5.8 Parsing the JSF component tree that only shows tags widget 
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Figure 5.8 shows a component tree with the root node is multitask A. Multitask A 

contains three Grid components file operation (fop), job submission (js) and file 

transfer (fs) respectively. The last two components define dependency among the Grid 

components.  

 

 

Figure 5.9 Each component has its own set of attributes and attributes can be given as 
constant or reference value 

Figure 5.9 shows the hash tables of components and the hash tables of attributes 

within JSF session scope. In this figure, each component listed on the component table 

has an attribute table. While the component parser parsing the GTLAB tags, 

components and attribute values are assigned to a tree representation. 

 

Figure 5.10 Properties of a component stored in a JSF session during component parsing 
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Figure 5.10 shows the component properties that stored into hash tables. These 

properties contains JSF component ID that is specific to JSF session management. 

Component name is given by the developers to label each component. Attribute and 

value binding references are stored in the component table as well.  

5.14  Monitoring and management of jobs 

Monitoring pages are responsible for keeping track of submitted tasks. Grid tasks 

usually take time to process. Consequently, managing the persistence of the tasks and 

archiving the results and input parameters are important for portal users. CBB provides 

a mechanism to store task handlers into persistent storage in the user’s workspace. 

Monitoring pages collect status information and task parameters from user’s workspace 

with a key named taskname. In general, CBB provides status information and updates 

archival storage accordingly. This has an important advantage that caches the 

monitoring information in the session. On the other hand, CBB stores URL handlers of 

submitted jobs which are provided by the Globus API. A URL handler is important for 

persistence. In case the user logs out or a session expires, the handler can always be 

accessible from archive and the user can retrieve status information with it. 

Monitoring pages check the status of submitted tasks.  We model task with Java 

Bean class called JobData.  Each submitted task has an associated JobData object.  The 

collection of JobData objects is stored in a java.util.List.  Job status information is 

displayed in HTML using the JSF HtmlDataTable component (which JSF converts to 

an HTML <table>). Properties stored in the JobData object include  taskname, input 

parameters, output and error file locations, start time, finish time and status.  
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Portal users can manage the tasks that resume, cancel or resubmit jobs. The 

MonitorBean supports these capabilities for active (running) tasks. The MonitorBean 

allows users to manage their job archive: failed tasks may be deleted or renamed for 

resubmission. Successful task results and output files can be downloaded or transferred 

to permanent storages. 

 

Figure 5.11 Sequence diagram for Grid tags and beans including user interaction. 
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5.15  Metadata management 

Metadata management has been investigated by projects such as the Storage 

Resource Broker [108] and Scientific Annotation Middleware [109].  For VLab, we are 

evaluating the use WS-Context [110], a lightweight, Web Services based metadata 

system.  A “context” is simply a URI-named collection of XML fragments.  To support 

linked contexts in GTLAB, we used extended WS-Context implementation to support 

parent-child relationships between contexts [111]. Context servers are normally used as 

lightweight metadata storage locations that can be accessed by multiple collaborating 

web services.  

The data collected from the user interface input form is written into a unique context 

associated with that user session. This data is stored persistently using a MySQL 

database, although this implementation detail is not relevant to the PWSCF portlet 

developer.  Each user has a base context, which is subdivided into one child context per 

user session.  These child contexts are used to store specific input parameter values for 

that particular job submission.  These sessions may then later be browsed and the data 

recovered for subsequent job submission. 

Although we may store and recover values one at a time from the context storage, 

we are developing a way to more easily store and recover entire pages using Java Bean 

serialization.  We are developing XML serialization of the entire input page using 

software from the Castor Project (www.castor.org).  This will enable the serialization 

of entire page contents, storing them into the WS-Context server, and then un-

serializing them to reconstruct the input parameter values. 
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Following WS-Context specifications, a Java object may be considered to be a 

“context”, i.e., metadata associated with a session. When storing a context, we first 

create a session in WS-Context store. Here, a session can be considered an information 

holder; in other words, it is a directory where contexts with similar properties are 

stored. Each session directory may have associated metadata, called “session directory 

metadata.” Session directory metadata describes the child and parent nodes of a session. 

This enables the system to track the associations between sessions. One can create a 

hierarchical session tree where each branch can be used as an information holder for 

contexts with similar characteristics. These contexts are labeled with URIs, which give 

structured names to tree elements. For example, “vlab://users/jdoe/session1” may refer 

to a session directory where contexts are stored and linked to a session name “session1” 

and user name “jdoe”. Upon receiving the system response to a request for session 

creation, the user can store the context associated to the unique session identifier 

assigned by the WS-Context Store.  This enables the WS-Context store to be queried 

for contexts associated to a session under consideration.  Our WS-Context 

implementation normally allows for the specification of the lifetime of the metadata.  

For VLab, each context is stored with unlimited lifetime as the WS-Context Store is 

being used as an archival data store. 

5.16  Collecting User Input Values and Handling Navigation 

Our Grid tags are primarily non-visual components in a JSF page that are associated 

with submit button actions.  However, many of the tag attributes (e.g., which host to 

use or input file to copy) must come from user input.  This is done using Web forms. 
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Thus, Grid tags are embedded into a complete JSF page that contains a Web form that 

has visual input and output text elements. There are only two exceptions: the 

<o:submit> and <o:handler> tags are bound to a button that triggers series of actions 

behind the scenes. Since Grid tags are unable to get inputs from the page, we need a 

mediator to communicate these user-provided inputs to our Grid tags. 

ResourceBean provides a simple way to represent common property values across 

the application. We define common property values for Grid beans such as hostname, 

provider, username etc. Each of these values corresponds to Grid tag attributes. Thus, 

ResourceBean gets its value from the Web form dynamically and assign it to the Grid 

tag attribute. ResourceBean enables users to enter dynamic values in the form and 

submit their tasks with these values. 

JSF page navigation is somewhat complicated compared to JSP page navigation, as 

the JSF pages’ links and HTML form actions do not directly point to the next page to 

load.  Instead, JSF navigation rules for a particular Web application are configured in 

the faces-config.xml file. Similar to standard JSF, advanced navigation controls the 

page with constant values as well. The <o:submit> button provides action attribute (see 

Figure 5.6) that assign a constant value for the destination page. Action methods and 

action listener methods of the <o:submit> tag is hidden from the application developers 

to reduce the complexity. But the navigation is left to application developers. The 

advantage of this architecture is that users need not wait on the submit page until it is 

completed. Instead they are directed to the destination page immediately (i.e., 

asynchronously). 
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5.17  Experiments 

GTLAB is aimed to decrease Grid portal development time, at the time GTLAB 

should not introduce unacceptable request processing overhead. The overhead is the 

cost of processing of job requests within GTLAB framework. As shown in Figure 5.13, 

end user requests are caught by portal server and GTLAB parses and extracts Grid tags 

from portlet pages. In the next step, Execution steps are created by calling appropriate 

Grid bean instances. By this time, job parameters and bean handlers are stored in the 

hash tables for future references such as tracking the progress of the jobs. Finally, the 

request is passed to the Grid service by invoking corresponding services like GRAM or 

GridFtp. 

We performed run-time tests to analyse GTLAB architecture by determining 

overhead in the overall processing time of the requests. Our testing baseline and testing 

framework is explained in great detail in the next section. 
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Figure 5.12 JSF applications uses Web forms through lightweight Web browsers. HTTP 
requests goes to the Web application on Tomcat and responses get back to the browser. 
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We expect that the most time consuming task of portlet development is creating Grid 

bean instances. While we integrate GTLAB to construct portlet pages, we observed that 

it reduces development time. We experienced these during the course of our use case 

Grid portals including QuakeSim, and VLab. 

GTLAB testing server runs on Tomcat server and these tests aim to measure 

turnaround time on the server and client sides. Clients make extensive number of 

requests to show performance and thresholds.  We have measured elapsed time for 

starting and ending of requests. There are two testing case: i) Response time for 

requests are initiated from browser client by submitting Web forms. ii) Response time 

for requests first comes to the tomcat server and responses leaves the tomcat server. 

5.17.1 Testing Setup 

GTLAB testing server runs on GridSphere portal framework and these tests aim to 

measure response time between the portal server and end user sides. End users make 

extensive numbers of requests to measure the timings.  The elapsed time is measured at 

each request and response in Figure 5.12. Our testing case is for response time in 

between end user and Grid services denoted by Tform.  

The end user requests are launched by using HttpClient programming interfaces 

[112]. HttpClient provides an interface to feed Web form parameters and submit 

actions. We have embedded simple DAG into portal submission pages to execute 

scripts at GRAM service. When the DAG runs, it first obtains the Myproxy credential 

from Myproxy repository and then submits shell script commands. In order to get 

elapsed time accurately, we have taken “submitted” message that is the initial 

acknowledgement from the Grid service into account. Since GRAM jobs are queued at 
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service location, departure time cannot be determined by waiting for “completed” 

message.  
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Figure 5.13 Request processing stages and their timing in portal server 

Figure 5.13 shows detailed steps that are magnifying the processing stages at the 

portal server. At the first stage, user requests (1) are parsed as using JSF component 

model. The Grid tag components are extracted from portlet pages and then the graph 

structure is constructed by keeping the dependencies among Grid operations. Next, 

Grid operations on the graph are assigned to Grid beans that are supported by Java CoG 

[66] libraries at (2). While Grid beans are created, the handlers of the tasks are stored in 

hash tables at (3). Finally, the submit action is called at (4) that invokes a Grid service. 

The acknowledgements and status changes are stored by handlers of the jobs. Grid 

services send response messages that may be a “submitted”, which is for successful job 
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submission or “failed”, which is for failure of job submission. At the final stage, the 

response message is directed to the end user through the Web browser (7). 

5.18  Analysis of GTLAB architecture 

Test scenarios are conducted to measure the overhead on TeraGrid nodes including IU, 

NCSA and TACC. The test results have shown that GTLAB framework has acceptable 

overhead as indicated on Table 5.3. The average overhead is about 150 millisecond. 

Figure 5.14 shows the results of average response time. The heights of the bars indicate 

response time, Tform  . In this test, we wanted to give an idea of response time measures. 

Therefore, the average response time is always less than 1 second which is an acceptable time 

for Web applications. Since Tform includes network transfer time between users, portal server 

and Grid services, in addition to processing time on the portal and Grid service.  

Figure 5.15 shows the average network latency, when users access to the portal server. 

Comparing with the average processing time on the portal server, the network latency is an 

acceptable amount of time. Another interesting aspect of this measurement is about the end user 

locations. Locating the users among different cities does not cause a significant delay on user 

requests. 

Table 5.3 Timings of GTLAB processing stages on the portal server 

 GTLAB 

Processing 

JSF Processing Handler storing Submitting 

Time 

(msec)  

2 153 1 410 



 

89 

 

 

Figure 5.14 Average response time of requests initiated by end users, Tform 

 

Figure 5.15 Average network latency time in between and user and portal server 

520

530

540

550

560

570

580

590

T
im

e
 (

m
se

c)

Average response time

CGL

NCSA

TACC

0

10

20

30

40

50

Average

T
im

e
 (

m
se

c)

CGL

NCSA

TACC



 

90 

 

5.19  Future works: Applying GTLAB into Web 2.0 

This section addresses the issues of applying Grid tags to Web 2.0 tools. Grid tags 

should support client side implementations for browser clients. This will show that 

GTLAB architecture is portable among various technologies. The important aspect is to 

convert Grid beans as services that Web 2.0 gadgets and widgets can directly access to 

them and utilize these services through well known client tools such as Google Web 

Toolkit (GWT) [113], Direct Web Remoting (DWR) [114] or Asynchronous JavaScript 

and XML (AJAX) [115]. We have sketched these main questions to review the GTLAB 

components. GTLAB components would work generally within any technology or tool.  

5.19.1 Discussion 

This discussion addresses the issues of applying Grid tags to JavaScript (JS), AJAX 

or Web 2.0 tools. Grid tags should support client side implementations for browser 

clients. This will show that GTLAB architecture is portable among various 

technologies. The important aspect is to convert Grid beans as services that Web 2.0 

gadgets and widgets can directly access to them and utilize these services through well 

known client tools such as GWT, DWR or AJAX. We have sketched these main 

questions to review the GTLAB components. GTLAB components would work 

generally within any technology or tool.  

Find out how to manage session in JS? 

How to embed tags in the JS? 

How to maintain user/cookie with JS? 



 

91 

 

Cookie management is only for JSF type server side applications. HTTP is not 

stateful so cookies maintain states for user sessions. But in case WSRF the server side 

is already stateful, so we do not need to worry about cookies. WS-Notification [116] 

provides a callback system for submitted jobs. 

How to use shared memory for JS session? 

If WSRF keeps the state on the server side, client would not need to worry about the 

session/shared memory ever. But the current GTLAB framework keeps many job 

submissions in the session and stores them in the hash tables within session memory. 

How to extract and parse Grid tags from the JS page? 

JS pages are HTML or XHTML pages. So they are structured. If parse the whole 

page, we can easily extract the Grid tags out of the page. If possible, using XHTML 

helps to keep the pages simple and machine readable. 

How to handle Web forms within JS? 

This question has two parts. 1) How to submit Web forms? 2) How to handle user 

inputs to text areas? 

In case of JS implementation of GTLAB there won’t be any Backing bean 

implementation; rather all bean interfaces and capabilities are already discovered and 

implemented as Java API. We need to implement these interfaces using the scripts. So 

the action scripts are bound to ‘Submit’ or action buttons that calls the right methods to 

access Grid services.  

On the other hand, GTLAB manages user inputs through Resource bean. There 

won’t be any bean in the scripts. But the same idea inspires the scripts. So we can 

implement get/set script methods to share common input values. These values are kept 
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in the session memory. Then the values are passed to the tag attributes. These are 

detailed implementation issues or details. We need to worry about the major 

architectural problems that are addressed in the first five questions. 

5.19.2 Web gadgets 

Gadgets can access to Standalone JSF code using HTTP object and performing 

POST operation. If you assume portlet pages there, you have to define a workflow to 

submit the job.  

MyProxy � File transfer � Job Submit 

The issue here is to store MyProxy in the session where gadget runs on. The other 

important aspect is to perform authentication thorough gadgets. 

5.20  Summary 

In this chapter, we have summarized the architecture of Grid tags and beans and we 

have reviewed the research issues that we raised. We have sought solutions to session 

management of requests in GTLAB that can handle requests. We consider our 

persistency mechanisms have also long term caching capabilities. We also handle 

synchronous request/response model in asynchronous fashion. We attempt to manage 

jobs and monitor the progression in timely manner. We have conducted experiments to 

show GTLAB does not add any overhead to existing servlet container. Our results are 

shown that the overhead is negligible for our architecture. 
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Chapter 6  

Applying workflows to Grid portals  

6.1 Foundations of scientific workflows 

Scientific workflows compose, execute and monitor multiple jobs in a logical 

sequence. Scientific workflows symbolize sophisticated application patterns. These are 

usually typical scientific experiment analyzing procedures. In some fields the 

experimental research are based on legacy workflow applications. For instance, 

bioinformatics community uses Taverna tool to develop and enhance bioinformatics 

workflows. 

There is lack of knowledge when developing scientific workflows. Some scientific 

fields already have constructed conventions and experience on building workflows. But 

most of the science communities are new to these emerging technologies. Even some of 

them have very limited knowledge and background on using computer-based 
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applications. On the other hand, many disciplines have stovepipe solutions to organize 

metadata for processing the simulations. This transition process for converting 

applications to computer-based workflows becomes foundations of the building 

workflows. A typical example of scientific workflow is to collect raw data from 

sensors, instruments and similar sources. Then store them in high capacity storages. 

Following by feeding application program to utilize the data and get some results. 

Results can be shown to scientists in certain ways: 1) Raw data 2) Plots 3) 2D images 

4) 3D images 5) Animations. The form of showing the results of the applications is 

called visualization. 

The applications can be characterized in very broad range in our study. Some 

applications are time sensitive, real time. Some of them controlled by the users and 

require human intervention. And most of the applications are enacted as “batch” 

process. The following is a list of application domains that we worked on.  

1. Material science applications 

2. Instrument and sensor based applications 

3. Earthquake modeling applications 

4. Molecular Science 

Scientific workflows are available to use in certain scope of computer software: 

including operating system, application software, middleware applications. For 

instance, workflows are available for local clusters in operating system level. Scientists 

can facilitate these applications by using command-line scripts or desktop tools.  
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6.2 Importance of workflows in Grid portals 

Grid environments and science gateways are utilizing applications run on different 

domains and on the Web. In order to support interoperability on the Web, we usually 

use Web services interfaces for legacy applications. Grid portals also provide 

portability of application processing and more importantly monitoring. Another aspect 

is to aggregate a lot of applications in well accessible platform. It is very similar to a 

shared desktop application that scientists can access through the Web.  

Science applications run in a logical order, tasks are depend on the previous task 

results. Grid portals aggregate science applications within a flow control. Hence, Grid 

portals collect all the features of workflow tools in a Web environment. The portlets are 

responsible for composing a workflow, executing it and keeping track of its progress. 

Portal events are part of Web application framework such as starting a workflow, 

stopping it, resuming it. There are difficulties to maintain all the events occurred in the 

Web environment. Events are initiated by end users by submitting a Web form within a 

browser session. Portal server needs to handle requests from different users and keep 

track of the user sessions in asynchronous environment.  

In a general approach Grid portals use portlets to split workflow processes into 

reasonable parts. For instance, composer could be a portlet, executer could be another 

portlet and monitor is also portlet. These three portlets can be grouped as in a Web 

application called workflow portlets. 

Interoperability of portlets is another issue with portals. Portlets should talk to each 

other in a straight-forward fashion. The pushing notifications within portlets allow 

workflow portlets to trigger chain of events. Therefore, workflow portlet can interact 
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with every other component within portal application. Such workflow can update 

calendars, drop messages to personal mailboxes etc.  

6.3 Legacy workflows for Grid systems 

There are numerous workflow frameworks exist in Grid systems. Most of the 

workflow frameworks utilize Web services to facilitate interoperability including 

Taverna, Kepler [117, 118], Business Process and Execution Language for Web 

Services (BPEL) [119], Pegasus, and Chimera [120]. We are going to evaluate Taverna 

and BPEL workflows in great detail in the following sections: 

6.3.1 Taverna 

The Taverna project has developed a tool for the composition and enactment of 

bioinformatics workflows for the life sciences community. The tool includes a 

workbench application which provides a graphical user interface for the composition of 

workflows. These workflows are written in a new language called the simple 

conceptual unified flow language (Scufl) [121], where by each step within a workflow 

represents one atomic task. 

The new conceptual language is represented as XML based syntax that can be 

deployed as Web services. Bioinformatics requirements led to the specification of 

Scufl. This conceptual language process steps of the workflow that represents atomic 

tasks. A workflow in the Scufl language composed of three main elements: 

(1) Processors 

(2) Data links 

(3) Coordination constraints 
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Processors are applications or filters that take inputs and generate outputs. Data 

links pipes the flow of data between processors. Coordination constraints restrict the 

execution between two processes where enforcing an order among processors. 

Scufl is supported by the Freefluo [122] enactment engine where Freefluo executes 

the Scufl instances. Taverna system which includes Scufl, Taverna workbench and 

Freefluo is widely used in several Genome and Bioinformatics project and tested by 

their user community.  

6.3.2 Kepler 

Kepler [117] is a scientific workflow environment in which scientists compose, 

execute and control analytical procedures. Kepler provides Graphical User Interface 

(GUI) for design and execution tools to support actor-oriented modeling paradigm. 

Kepler workflows can be sketched in XML. Kepler is built upon Ptolemy [120] system 

that controls the execution model via directors. Workflow steps are described as actors 

that can utilize data sources, sinks, filters etc. Actors can have multiple input and output 

ports to direct the flows. Also parameters specify behaviors of the actors. 

Actors can run on local runtime environment as well as extend distributed execution 

via Grid and Web services. Kepler currently supports Java Native Interface (JNI) for 

different language platforms as well. Other workflows like Taverna are all based on a 

single dataflow execution model, while Kepler handles many.  

6.3.3 Karajan 

The Karajan [123] workflow framework provides access to Grid services by using an 

XML-based definition language. Karajan can be utilized in various platforms. Karajan 
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has its own parallel and structural language that is adopted for Grid services needs. 

Users can define jobs and their lifecycle management using the Karajan language.  

Karajan scripts are run by a Karajan engine, which may be embedded in a Karajan 

service. 

Karajan service is a workflow engine that can be accessible by several ways such as 

polling, call-backs, and persistent data retrieving. When users submit their workflows, 

Karajan service interprets these inputs through Karajan libraries. Then the engine 

creates client stubs for the tasks defined in Karajan script. These tasks are submitted to 

the Grid services using Java CoG abstractions. 

6.4 Handling Directed Acyclic Graphs in GTLAB 

GTLAB is designed to utilize several DAG frameworks in Grid computing including 

Globus [61] toolkit (by using Java CoG interface “taskgraph”) and Condor DAGMan 

(by using  the Birdbath [67] Web services interface). DAGs are built by application 

programmers and are embedded into JSF portal pages. Grid tags help to compose 

DAGs with dynamic parameters entered by end users within portlet pages. Grid tags are 

also responsible for executing workflow by initiating ‘submit’ tags. In Figure 5.4 the 

first job moves the input file from a remote host to the execution host. The second job 

runs a script on the execution host depending on completion of the first job. In other 

words, the script cannot run unless the input file is ready on the execution host. Finally, 

Grid tags allow users to keep track of the execution of the DAG by facilitating handler 

tags.  
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Java CoG Taskgraph: Java CoG encapsulates Grid services clients in abstract 

interfaces. In addition to Grid services, CoG interfaces also introduce a DAG 

expression capability, which is called taskgraph: pipelining a few Grid services calls as 

DAG. A CoG taskgraph is a DAG interface that is built using the Java CoG API. The 

CoG DAG builds workflows on top of Globus toolkit services such as GRAM and 

GridFtp. All service calls and their order and dependency relations are defined within 

taskgraph interface.  

GTLAB implements a layer on CoG API that is encapsulated by XML tags. For 

instance, the taskgraph interface is used by <o:multitask> tag. These XML Grid tags 

are supported by Grid beans. Grid tags are injectors for Grid beans (using Inversion of 

Control design pattern [30]). They initialize beans and manage their lifecycles. A 

<o:multitask> tag can define attributes (see Figure 6.1) for taskgraph including id, 

taskname, handler and persistent. multitask also can contain dependent task objects are 

represented as sub tags including <o:myproxy>, <o:fileoperation>, <o:jobsubmit>, 

<o:filetransfer> and <o:dependency>.  

Application developers compose their DAG scenario by using Grid tags and beans 

together within GTLAB framework. In this case, DAG attributes are filled by the 

developers. Some of the attribute values are application dependent and so they are 

static.  For example, the Globus toolkit provider attribute can be set as GT4 for entire 

portal. On the other hand, some parameters are provided by the end user through input 

forms.  These attributes must bind HTML input text by using expression language 

semantics within JSF.  
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 Condor DAGMan: Condor [34] is an environment for scheduling and executing 

applications on distributed networks of computers. DAGMan is a tool for describing 

complex application workflows to be executed on Condor in terms of directed acyclic 

graphs. In this case, GTLAB allows the user to prepare or transfer descriptions of 

Condor jobs or workflow scripts described with the DAGMan. End users can return 

later and monitor the progress of the jobs. 

Condor manages job submissions to Globus-based Grids through Condor-G [69]. 

GTLAB provides a web application  environment which can turn out to be a portlet for 

Condor DAGMan by introducing two additional JSF Grid tags: <o:condorDagman/> 

and <o:condorSubmit/>, which we describe below. 

<o:condorSubmit/> is for single job submission to Condor-G resources. 

<o:condorDagman/> is used to describe composite DAGMan jobs and their 

dependencies along with a scripting file. Similar to our <o:multitask> tag, these tags 

provide access to Condor services in terms of using Condor beans. Our Condor beans 

have capabilities to prepare Condor jobs, submit jobs to Condor resources and manage 

the lifecycle of submitted jobs.  

Condor has no equivalent Java client libraries that correspond to the Java CoG for the 

Globus toolkit. However, Condor provides Web services interface called Birdbath [67]. 

This provides an XML abstraction of the programming interfaces that can be bound to 

different languages such as (in our case) Java.  Our Condor beans are built on top of 

Birdbath Web services clients. The Birdbath layer allows us to program Condor 

capabilities within Java Beans and associated Grid tags allow us to describe job 



 

101 

 

parameters by using dynamic Web interfaces. In this case, we use Web services clients 

to program Condor, instead of using command-line interface.  

Birdbath client stubs are developed from the BirdBath Web service interface. We 

have packaged Birdbath clients as jar and added it to the library.  

 

Figure 6.1 XML schema of multitask represents a DAG. It shows the relationship of Grid tags 
by defining dependency tag in GTLAB. 

6.5 Design and Architecture of GTLAB Workflows 

We consider in this section strategies for supporting more complicated workflows 

than can be represented by DAGs.  Our goal in GTLAB is not to reproduce extensive 

pre-existing work in this field but to instead take advantage of it.  
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DAGs are very useful in case of simple workflows such as submitting a few tasks in 

a group. We have added new features to GTLAB such as the ability to build sub-graphs 

to allow partially ordered tasks. Partially ordered tasks can group the sequence of the 

tasks based on their dependency. But in case of enhanced workflows, DAGs are not 

sufficient. For example, if a user needs to try and run the simulation many times with a 

DAG, the DAG has to maintain loops. If an application portlet needs to provide 

dynamic flow control based on constraints, the DAG has to support conditional 

branches. Those features do not exist within DAGs. Thus, a scientific community has to 

facilitate these capabilities; they need to use workflows that cannot be expressed as 

simple DAGs. Directed graphs naturally do not handle this type of data structures. Our 

solution for supporting these more complicated workflows is described in this section. 

Workflows are sophisticated flow control mechanisms of group of tasks. The 

foundations of Grid workflows are described in a special issue of Concurrency and 

Computation [39]. The tasks could be parallel, sequential, or concurrent. Workflows 

can handle loops, branches and conditional branches. Workflows can be overviewed in 

three main parts: 1) Composer, 2) Enactor, and 3) Monitor. 

Composer: The composer is an essential part of the workflow representations. 

Workflows represent services as nodes and constraints as edges to the nodes. In this 

case, the top node is the starting point and intermediate nodes denote tasks and local 

filters. Edges denote dependencies. This structure could be a graph where nodes 

correspond to tasks and edges corresponds to relations. Also direction of the edges can 

limit the flow similar to flow charts.  



 

 

Figure 6.2 shows a composition of three Grid tasks in order.

within Taverna is an interesting approach. Taverna can utilize some services with local 

clients such as MyProxy. Although other Grid services already have Web services 

interfaces in GT4. These services can be scavenged to Taverna. Therefore, we are able 

to manage Grid services workflows through Taverna.

Figure 6.2 Taverna composition of three major Grid tasks in a workflow

Enactor: An enactor is a workflow engine that process nodes in the order determined 

by the composed graph. End users provide values for workflow inputs. Workflow 

processing results in with work
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that is output of the previous one. An enactor also maintains constraints, branches, 

loops and parallelism. 

Monitoring: Monitoring follows up the processing steps. It also manages lifecycle of 

the workflow. End users are able to interrupt the workflow to pause or cancel the 

execution of the workflow at each step.  

Unlike DAG composition within GTLAB, workflow composition is out of scope of this 

work. In case of DAGs there is only a few tags definition exist such as multitask, 

jobsubmit, myproxy, fileoperation etc. GTLAB provides one-to-one mapping for each 

entity in DAG definition. But workflows are more comprehensive than DAGs, and 

there are many entities to define a complete workflow. Workflow policies are described 

by their own composition language. We either need to provide one-to-one mapping of 

each entity that exists in the workflow language, or Grid tags could import workflow 

policy as whole within GTLAB. We prefer the latter, to embed built-in workflow files 

into the enactor. The enactor takes the workflow description file as an input to start 

workflow engine for execution. 

Our strategy for supporting workflows is as follows: GTLAB framework binds an 

enactor engine to a ‘submit’ button within a Web form on the portal page. Once the 

button is clicked by an end user, the enactor engine takes control of workflow along 

with the composition document. These workflow documents are already checked for 

validity. Workflow frameworks define their composition rules as explained in great 

detail in the next section. Finally, the engine starts running at the backend to process 

action steps. 
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GTLAB monitoring features are listed as status updating, cancelling, pausing, and 

resuming the jobs. GTLAB assigns unique handlers for all submitted workflows within 

the user session. These handlers are associated with ‘handler’ tags. The handler tag 

utilizes the capabilities of monitoring bean by using attributes and sub-tags. 

6.6 Taverna Use Case 

Taverna is workflow tool for composing and executing Web services. Its main target 

is bioinformatics applications, but it can in fact be applied to general workflow 

composition problems. Taverna includes a graphical user interface workbench that is 

used to formulate workflows. The Taverna workbench solves issues of complexity of 

the workflows by providing user friendly interface. The workbench facilitates 

diagrammatic and explorer representation of workflows. It allows users to compose 

their own workflows or to load previously designed workflows, such as may be 

obtained from a community repository with expert contributors.  The workbench also 

lists the available resources (e.g. Web services) where the workflows can run. After the 

resources and enactor engine types are selected by a user, he or she can start the 

workflow and can monitor progression. The user can interrupt the workflow for 

cancelling a step or stopping the workflow.  

The Taverna workbench relies on XML-based Scufl workflow scripting language. 

Scufl consists of a network of processors and links. In addition to basic entities, Scufl 

also can have input and output nodes and constraints for processors. The Scufl language 

primarily is designed for users who are familiar with Web forms and scripting 
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languages to use Web resources. Scufl is practical and is designed with extensibility 

features.  

Workflow portlet: Generally a workflow portlet should contain these three major 

parts: 1) Defining workflow components and their relationships. 2) Executing the 

workflow: in case of Scufl, we use the Freefluo [122] enactor engine. 3) Monitoring 

execution flow and applying capabilities like resume checkpoint, cancel, remove, etc. 

Typically the first and third steps are tied to a strong graphical user interface such as the 

Taverna workbench.  

Building a workflow composition environment with the graphical user interface 

features require many visual designs to accomplish with a success. The Taverna 

workbench is already available for composing workflows. Building a workflow 

composer out of Taverna is out of GTLAB’s scope. But we can alternatively provide a 

text field to compose workflows in XML (e.g., Scufl) on the portlet page. However 

there are two drawbacks of this approach; 1) it is hard to catch syntax errors when 

composing a workflow, and 2) the Scufl document should be validated against Scufl 

schema. This process is offline and requires additional efforts.   Scufl composition is 

out of scope for our current GTLAB work.  However, it is common for Scufl-defined 

workflows to be reused and shared between developers, since many scientists are 

interested in the same basic workflow.  

The workflow portlet application utilizes extended GTLAB features to submit Scufl 

workflows. This portlet loads a Scufl workflow file, collects input values from end 

users, submits the workflow on Taverna, and monitors the results inside the GTLAB 

session framework.  
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Figure 6.3 A user interacts with a workflow portlet to utilize Taverna enactor. User provides 
parameters by submitting a Web form that start the chain of events in order. 

 

Figure 6.3 illustrates the handling of Taverna tags within GTLAB. In this case, 

Taverna tags are embedded into JSF portlet page integrated with a Web form. End 

users only see the Web form with a few text fields and submit button. They never see 

the Grid tags and JSF tags that build the portlet page. This is common for all Web 

applications. When the end user submits a Web form through the portlet page, JSF 

intercepts this request and calls the associated action methods of Grid beans. Next, Grid 
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beans load the appropriate Scufl document and input parameters to Taverna bean. 

Finally, the bean method starts execution of the workflow on Taverna enactor. 

GTLAB assigns job handlers to each submitted workflow within the user session so 

that keeping track of the progression. In case of Taverna, the handlers synchronize with 

Taverna monitoring services to follow the workflow states.  

Taverna Security: Taverna generally works in non-secure environments with Web 

services that can be used anonymously. The Taverna workbench uses local filters and 

scripts. The main concern of bioinformatics community is to process massive data by 

using complicated workflows. However, security is a critical issue in Grid services that 

rely on secure connections. Traditional Grid services apply GSI security [73] by using 

X.509 certificates. Since Taverna can facilitate emerging Web services technologies, 

we need to employ WSRF [60] and GT4 services within Taverna. Therefore, it is 

essential to address whether WS-Security [124] is applicable to Taverna processors. 

Similar problem has been addressed by [125] extending Taverna workbench adding 

new processors that support WS-Security. 

Figure 6.4 show an alternative approach to protect Taverna services by PERMIS 

system. In this case, we restrict general user accesses to Taverna services through 

portal. Therefore, the authorized users can only enact Taverna workflows within their 

portal user spaces. 
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Figure 6.4 Grid portal support Taverna and PERMIS authorization schema. 

6.7 Persistency issues of workflows within GTLAB 

Grid workflow compositions are usually provided by community scientists. 

Workflows are well-studied experiments and they are reproduced by the users. As a 

result, keeping good workflows in a repository and then accessing with provenance is 

crucial for Grid portals. There are various ways to provide a well established persistent 

repository for workflows and data. i) File systems may be persistent repositories, ii) 

database access is another way of keeping resources persistent. iii) WS-Context service 

provides service based access to the repository. The advantage of using service based 

storage is to provide provenance and ontology.  

6.8 Discussions and Conclusion 

Workflow extensions to GTLAB increase the usability of Grid tags in wide area of 

scientific applications. Most of the science gateways are managing execution steps 
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intensively. Such a case is the VLab portal that facilitates simulation parameters and 

refines them within first round of iterations. In the next stage, application is started and 

results are shown in visualization environments. Similarly more complex science 

gateways can utilize GTLAB framework for their application systems.  

Portal persistency mechanism provides a repository of ready-to-use workflow 

compositions. The persistent storage can be accessed by metadata and provenance. 

Inexperienced users can first try the selection of good examples to exercise the best 

practices in that scientific arena while they are passing the learning curve.  

Different workflow compositions are persisted and archived in the repository while 

their execution steps are closely watched and are reported. These stored steps of events 

can be use for future failures and enables the system to roll back to stable level and 

rerun form that point. 

In this chapter, we have evaluated our initial VLab portal development work, which 

constructed workflows for Material Sciences that are based on DAGs. We provided 

support Globus toolkit by using Java CoG. Extending this initial work, we have added 

support for Condor DAGMan by using Birdbath services. We have also evaluated how 

to extend our architecture to support more complicated workflows and have 

implemented support for Taverna workflows.  This allows us to deploy and manage 

more comprehensive workflows using Web services. We have designed additional Grid 

tags for Condor DAGMan and Taverna workflow. In conclusion, we showed that our 

GTLAB framework is extensible and applicable to different types of workflow 

frameworks.  
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In the next section we will discuss adapting GTLAB framework to work with BPEL 

and Kepler workflows.  

6.8.1 Discussion of Kepler and BPEL extensions 

Kepler actors can have multiple input and output ports to direct the flows. Also 

parameters specify behaviors of the actors. Actors can run on local runtime 

environment as well as extend distributed execution via Grid and Web services. Unlike 

Taverna that is based on a single dataflow execution model Kepler enables workflows 

to handle multiple flows.  

GTLAB is trying to abstract all different workflow approaches in a portal container 

that users can customize application specific workflow mechanisms. For example, 

application users compose the generic workflows for specific tasks. Then in usual case, 

end users enact these workflows by providing parameters while we provide additional 

parameters that end users can choose to run the experiments in different workflow like 

Taverna or Kepler. Although, the end users are technically able to run any workflow, 

they should also know whether their system can run this workflow. On the other hand 

generic workflow helps people from diverse disciplines. Generic workflow portlet can 

run on either Taverna or Kepler. 
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Chapter 7  

Portlet Access Control Mechanisms  

One of the benefits of Grid portals is to grant personal workspace and to provision 

computing resources in the Grid. Grid tag libraries are very useful to manage Grid 

backend services that are individually used by a specific user. GTLAB provides a 

workspace environment to each user that can manage jobs, credentials and metadata. 

On the other hand, not only scientists utilize the personal accounts, but also they 

collaborate on the observations and they exchange data. To this extend, we need to 

provide an access control mechanism to allow scientists to share data for collaboration. 

In this chapter, we review CIMA portal to point out interesting access control 

problems exist in the current JSR 168 portlet specification. We also give detailed 

architecture of CIMA about how we solved these issues. 



 

113 

 

7.1 User account management in Grid portals 

Portals aim to give different look and feel environments to the users. Users are able 

to customize their own browser windows with their selected applications. In a simple 

science gateway, there are many types of users can access to the gateway. Portal 

administrators are responsible for configuring and maintaining the portal resources. The 

scientists manage core applications and naïve users who browse on the results or see 

the effects of the applications. 

Portals have services for user management, authentication, authorization and groups. 

These concepts are not new in distributed systems, thus portals mimic these capabilities 

in higher level. Although portals provide services for user management and limited 

access to resources, portals interfaces are designed to serve end users in three tier 

architecture. However, in the middleware the services also require secure accesses to 

the Grid resources. Thus, account mapping among tiers is essential for Grid portals. 

There are certain account management techniques comply with these requirements 

including MyProxy, GAMA and Purse. These technologies are overviewed in the 

context of authentication.  

7.1.1 Authentication 

General portal page provide anonymous access to the public just like an open Web 

page. The first portal page is also gateway to the legitimate users. Authentication 

usually is provided by using username/password pairs. Credentials also can be used for 

authentication. After valid authentication, portal services load user’s applications and 

environment settings such as color, style and font types. Although the user context is 



 

 

setup, accessing to the services may require authentication tokens. Depending on the 

application type portal server can provide various authentication tokens such as 

username/password token or Grid crede

Portal user tokens are mapped to Grid credential in several ways. One of the OGCE 

methods is to provide a MyProxy portlet 

portal users. In this case two

portal and then gets the proxy credential respectively. During the portal session Grid 

credential proxy will be alive for two hours. The advantage of this method is that user 

keeps the Grid access under control. There is no way to portal proxy credential get 

user’s behalf. On the other hand, there are administrative complexities such as users 

have to deal with two separate accounts, their applications and their maintenance. 
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Figure 

Grid Account Management Architecture (GAMA) 

MyProxy portlet by combining Grid accounts and portal accounts in a trusted server in 

Figure 7.1. Once user logs in to the portal, the proxy credential will be set and ready to 

use. Also account creation relatively easy too. Portal admin creates port

generates Grid credentials and store them in the repository. GAMA user interfaces are 

packaged as JSR 168 portal and runs in GridSphere environment. We preferred to use 

GAMA in CIMA portal because JSR 168 portal support. It is relatively easy t

computer illiterate people who do not need to know about underlying Grid services to 

issue the proxy credentials.

The Portal-based User Registration System

manage Grid accounts in Web applications. There was no portlet interface of PURSe 

when we choose to use GAMA. The difference is PURSe does not
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Figure 7.1 Snapshots of GAMA enabled CIMA portal 
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server. PURSe utilizes a certificate authority and MyProxy repository to create and 

issue Grid credentials. It also accepts existing Grid credentials. OGCE has PURSe 

portlets [126] that support JSR 168 compatible Grid portals now.  

7.1.2 Authorization 

Portals use authorization schemas to utilize fine-grained user access rights on the 

resources. Grid services and legacy applications also use authorization systems at 

service layer. The issue is to map the different level of authorizations without 

weakening the security. UNIX authorization framework is well known example of 

access control and group management on Unix file system.  

We have overviewed the services have applied authorization schemas are Shibboleth 

and PERMIS. 

Shibboleth [83]: Shibboleth provides single sign-on among domains while keeping 

user identities private. Shibboleth services are based on Security Assertion Markup 

Language (SAML) [84]. Shibboleth has two major parts, Identity provider and Service 

Provider. An identity provider creates, maintains the user accounts while service 

provider accesses to the resources. Shibboleth also provide a “Where are you from?” 

(WAYF) service for third party accesses decisions. WAYF service mediates among 

identity services of requester and service provider. The positive side of the Shibboleth 

is to federate portal instances among the organizational boundaries. 

PERMIS [87]: Privilege and Role Management Infrastructure Standards Validation 

(PERMIS) provides role based authorization management among multiple domains. 

PERMIS uses XML based policies defining rules, specifying access control decisions. 

Roles are secured by X.509 certificates and stored in Lightweight Directory Access 
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Protocol (LDAP) repositories. Policies are enforced during service access by 

Authorization Enforcement Function (AEF) and then the service negotiates with 

Authorization Decision Function (ADF) to assert policies. The advantage of PERMIS 

architecture is to fit into role based portal architecture.  

7.1.3 Portal Users and Groups 

Portal users are defined as entities to access the resources with limited rights. 

Naturally some users would have access to all resources like super users and some end 

users can only access to resources with very limited capabilities. Current portal 

designers generalized the users with the roles. The most common roles are super, 

admin, user and guest where super and admin most privileged users.  

Role Based Access Control (RBAC) [127] defines rules with set of permissions to 

the users. Users are assigned to a role or combination of roles. Most popular portal 

containers apply this schema such as Jetspeed, GridSphere and Sakai as essential part 

of the user management service. 
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Figure 7.2 Relationships of CIMA portal roles, users and groups 

 

Portal groups are composed of the users who are willing to access the same 

resources for collaboration such groups can be named as crystallographers in case of 

CIMA portal [47, 92]. Groups are functionally similar to Unix groups. Group member 

can share the common resources and they will have accessing and modifying rights on 

the shared resources. 

Figure 7.2 depicts the relation of roles, users and groups among CIMA portal. Roles 

are defined in GridSphere portal framework and they are default values including 

super, admin, user, and guest. 
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Where super owns the portal resources, admin has right to create users and maintain 

portal resources, users have limited access to the portlets and guest is the anonymous 

portal page. There are CIMA groups including crystal provider, crystallographer and 

user. Where crystal provider owns the raw samples, crystallographer analyze and 

classify the samples, users can see their own samples and the other of samples unless 

they are private. CIMA users have roles when they created in first place and then admin 

assign them in relevant groups. 

CIMA portal currently uses GridSphere framework and its own specific role, user 

and group schema within AccessControlManagerService. GridSphere support access 

control with Role Based Access Control (RBAC) schema. GridSphere RBAC schema 

has predefined roles. For example, GridSphere comes with four predefined roles: 

• Super, admin, user, guest 

CIMA Data Manager proposes roles as following:  

• Provider, crystallographer, user and guest. 

CIMA roles do not map with GridSphere roles, in contrast, GridSphere and its 

portlet container support users. In order to define the contents mapping to CIMA 

requirements, we need to describe groups within portlet contents. In contrast to 

GridSphere that can only group the portlet applications. 

CIMA utilized additional database tables to support its own group and roles. CIMA 

portlets accessed to group tables with usernames and retrieved data from Data 

Manager. This CIMA specific portlets are only able to run with GridSphere user 

database. As a result CIMA portlets are tightly coupled with GridSphere. 
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CIMA portlet access control mechanism is based on a stovepipe solution. It does not 

apply any policy for portlet contents. CIMA requirements are applied in a hard-coded 

way. If they need to change the requirements and policies they need to elaborate the 

mechanism and re-implement the new approach. That is the drawback of CIMA access 

control mechanism. We need to abstract this approach to solve and adapt this solution. 

7.1.4 CIMA Portlets for Partner Labs 

CIMA portal provides portlets from each partner lab so that sharing and 

collaborating on samples of various partner labs. Current implementation of CIMA 

only allows adding portlets for corresponding partners. There is only one portal 

instance running at Indiana University Molecular Structure Center (IUMSC) [128] that 

can access all other resources using the portlets. This approach does not scale well and 

brings administrative burdens. Each lab should facilitate its own portal server with their 

administration staff. Shibboleth and PERMIS based authentication and authorization 

systems will be applied to federate CIMA portals.  

7.2 Controlling Access to Grid portlet contents 

We have overviewed user management of portal architectures so that narrow down 

the granularity problem within the portlets. JSR 168 portlet containers are designed to 

support portlet components as smallest part; additionally JSR 168 does not enforce any 

authorization mechanisms to portlet contents. JSR 168 able to describe user names as 

subject, there is no associated access control list. In order to solve this problem we have 

sketched the needs and our solution to portlet access rights and groups. We have 
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evaluated CIMA portal case in detail and implemented portlet groups on the 

GridSphere that utilizing CIMA samples.   

 

Table 7.1 Sample features in CIMA portal 

Sample No Crystallographer Crystal 

provider 

Real Owner Permission 

00001 IUMSC Dr. Chris Chris 0 

00002 IUMSC Dr. Tall Tall 0 

00003 IUMSC Dr. Graph Graph 1 

00004 IUMSC Dr. CJ - -1 

 

Table 7.1 Sample features in CIMA portal shows the sample information that 

includes sample number, crystallographer, crystal provider, owner and permission. 

Sample number is uniquely assigned once the provider places a crystal sample to the 

portal. Permissions to the raw samples are 0 that means sample owner can change 

metadata of the samples. Once the permission set to 1 then crystal owner cannot change 

anything with the sample. After that crystallographers can publish these samples as 

public or private. If it is private, only the crystal provider group that owns the sample 

can see that sample. Public samples are displayed anonymously. 
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7.3 Implementation of the CIMA Crystallography Portal 

7.3.1 Requirements 

For the current work, a subset of requirements relating to user and administrative 

interaction with data was chosen. These include the following: 

� Remote users and in-lab crystallographers must be able to monitor an experiment 

in progress, including viewing current and previously collected CCD frames and 

associated relevant  environmental and technical parameters; 

� All raw data is owned by the lab which performed the experiment and collected 

the data. In addition to the lab, represented by one or more lab administrators, 

individual users can view (but not modify or delete) their samples; 

� Lab administrators must be able to control sample ownership and visibility; 

� Because the notion of when an experiment ends is not clearly defined (e.g. 

experiments may be truncated after the fact or additional frames may be gathered 

based on evaluations made during a run), lab administrators should be able to set 

the end time of an experiment; 

� Lab administrators must be able to add and remove users to an access control list 

for a sample;  

� Users must be able to view their samples, including all files and sensor readings 

related to the experiment; 

� Some sample data may be provided to the general public for educational or 

public science awareness purposes; 

� Users must be able to view the current status of the lab as a whole; 
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� Individual functions that are of general utility should be implemented in a 

reusable, pluggable, standards-based manner as portlets that can be added or 

removed by administrators or end-users as appropriate; 

� The portlets must interact with a lab’s data manager software via Web services 

calls; 

� Users and groups will be managed by the portals container and access to all 

functions of the portal will be provided by a single sign-on through the portal. 

A prototype implementation of the crystallography portal was completed using 

Jetspeed1 and CGI scripts. Although in the right direction, this implementation did not 

meet our modularization requirement and so with the ramp-up of the NSF middleware 

project and the availability of support from the OGCE group, we migrated to 

GridSphere and JSF-based portlet clients to CIMA services as a fully JSR 168 

compliant portal container. This assures a degree of survivability and lateral flexibility 

to move the science process specific functionality to other containers if the need arises. 

The requirements outlined above led us to develop the following portlets: 

� A lab overview portlet that provides the current status of a facility and its 

instruments; 

� An administrative Admin portlet to support management of sample ownership 

and other parameters related to individual experiments; 

� A PublicSample portlet that provides sample data to all portal users and the 

general public;  

� A UserSample portlet that shows a logged-in user their samples and other 

samples on whose access control lists they appear. 



 

124 

 

PublicSample and UserSample portlets also allow users to scan through all data 

objects in an experiment (Figure 7.3). Per design choice some functions of the portlets 

are made available as pop-up windows. These portlets provide all of the functionality 

listed in the requirements above. Extensions to the portal’s basic group authorization 

mechanism provide an access control list associated with each data collection. 

Scientists can view and modify sample data from their X-ray diffraction 

crystallography experiments based on their roles in this project and can add users to the 

access control lists of their data sets. Nothing more than a Web browser is needed to 

interact with the system.  

 

Figure 7.3 UserSample portlet that allows users to stepwise scan through an experiment. 
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7.3.2 Architecture of the CIMA Crystallography Portal 

Developing JSF Web applications includes support for UI components, independent 

backing JavaBean code, and simplified management of HTTP request and session 

parameters. UI components handle the interaction with users and communicate with 

Web services through managed beans for such tasks as access to databases. Then we 

use portlets to wrap the Web application so that we can make use of the user, group and 

layout management from the portlet container (GridSphere), and also we can deploy 

these portlets with respective configuration for different laboratories within the same 

portal. Furthermore, since the relationship between our portal and data manager is 

loosely coupled by using Web services, we can effortlessly deploy the portal and Web 

services at diverse locations.  

JSF Web applications handle the UI events and navigation rules to implement the 

application controller logic. Stubs are generated according to the WSDL of Web 

services via WSDL2Java tool provided by Apache Axis [76]. This allows access to the 

Perl-based data manager services.  The managed beans in the JSF Web application 

invoke on the stubs to communicate with Web services and store the data returned by 

Web services. JSF provides a value binding mechanism to make it easy for Web 

applications to represent the data combined with managed beans to users.  

These beans are populated with information from Web services calls to DM_WS. 

They are used to set up the model for sample data and related parameters. 

WQuerySampleDataBean and SampleDataBean acquire the basic information of 

sample data, such as sample number, laboratory, instrument and so on. SampleInfoBean 

and TemperatureBean obtain environmental conditions related to a specific sample, 
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like temperature and humidity. SampleFilesBean and FilesBean inquire CCD frames 

both in raw and jpeg format pertaining to a specific sample. SampleCameraBean and 

CameraBean query camera images of laboratory and crystal during the experimental 

period. 

7.3.3 Identity Mapping between Portal and Data Manager Service 

A significant problem faced in the design of the CIMA crystallography portal is the 

mapping of identities and associated privileges of portal users to identities associated 

with data sets gathered by the My Manager component. 

The authorization model used by the portal container is that of users assigned to a 

limited set of four roles (Super, Admin, User, Guest), whereas the data manager uses an 

authorization model with users, groups and access control lists that can contain users 

and groups. Gridsphere does have a notion of groups but this is related to what users 

can access which portlets rather than a Unix-like notion of a general authorization 

mechanism for sets of users. Since the portal does not provide a flexible authorization 

scheme, a design choice was made to perform the mapping of portal users to data 

owners, groups and access control lists in the logic of the portlets used to access the 

data manager.  

As mentioned above, there are three portlets, PublicSample portlet, UserSample 

portlet and Admin portlet.  For UserSample and Admin portlets, users can only access 

the related data according to their roles. Thus, an approach is required to match user 

identities between portal and data manager service.  

Then the username can be used to query the database combined with GridSphere to 

get the information of the user, such as user’s full name, email address and groups, etc. 
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Because the current version of GridSphere doesn’t support a hierarchy of groups 

containing users, we use GridSphere portal groups to control access to portlets that, in 

turn, control access to data objects. Several GridSphere portal groups are created: 

“<lab>_admin” represents the lab administrators who can access Admin portlet and 

are in charge of the ownership and access control of samples; “<lab>_client” 

represents portal users who are clients from a single lab and can access UserSample 

portlet.  Access control lists are implemented as other groups titled as research group 

names, the members of which can view sample data from the group they belong to 

(non-public samples). The lab administrator can control the access list for a sample 

through Admin portlet according to users and groups mentioned above. The first two 

groups (<lab>_admin and <lab>_client) are used to separate users from different 

laboratories when there are multiple CIMA crystallography portals deployed in the 

same container. Gridsphere specific database tables are required to get user 

information. Finally, the user name and groups information are transferred as 

parameters to Web services to fetch sample data. 

7.4 Summary 

In this chapter we have summarized the access control methods of portlets within 

JSR 168 portlet containers. We have emphasized that fine-grained access control 

schemas are not described in the JSR 168 specification. The new specification (JSR 

286) claims to cover these features. We have implemented and have shown a model of 

portlet access control through GridSphere portal framework. In general, accesses to the 

user management database are tightly coupled with GridSphere framework. Nowadays 
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open source portal community converging to standard solutions of user management. In 

the future, we can abstract these portlet group capabilities and synchronize our solution 

to the other portal frameworks. 
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Chapter 8  

Conclusion and Future Works  

Web portals have been gaining more attraction and usage as the number of online 

users increases. In addition to current commercial Web portals, computing and Grid 

portals, which are more specific to their respected topics, will be more important for 

researchers and academia. A Grid portal would perfectly fit as an interface for Grid 

services. As such, links to other online applications for batch job execution, massive 

data transfer and information retrieval. 

Despite the fact that the Web portals were initially intended to be used as 

aggregating content providers, its infrastructure has caused the rapid development of 

Grid environments through Web portals. The main characteristics of this Grid 

computing environment are the following: 

• File and data management 

• Scientific application management 
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• Access to user-centric metadata services 

• Sharing computing and data resources via Grid 

• Pervasive security environment to establish authentication and manage access 

rights to resources. 

Grid portal technologies have been dramatically enhanced since last decade. 

However, instead of fully utilizing all the above important features, many of the initial 

approaches focused on specific Grid services. Most applications used standard open 

interfaces of the Grid and tied with the middleware architectural paradigms. Grid 

portals are good representatives of this type of approach.  

From 2002, many science portals and gateways have been based on the reusable 

portlet component model. Although this model is an important foundation, in practice 

we have not seen the wide general adoption that was expected.  Portlet repositories 

exist [26], but generally portlets are designed to encapsulate functionality at a coarser 

level than needed by most science portal.  The problems are two-fold: 

• Science portals have, for the most part, small communities of specialized users 

that do not scale.  An RSS feed reader portlet (e.g. [129]), for example, would 

have thousands of feed sources that it could display. These could range from 

major news services such as Reuters to personal blog feeds.  Such a component 

would be usefully shared among hundreds or thousands of portal installations 

(supporting campus and corporate intranets, for example).  The total number 

users of all instances of this simple portlet could scale to millions.  In contrast 

the total number of users of PWSCF would number at most in the hundreds or 

thousands, so a PWSCF portlet in the VLAB project is both much more 
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sophisticated and designed to support a much smaller community.   We may 

design a reusable PWSCF portlet, but it is unlikely to find much usage by other 

science gateways than VLAB.  Thus the design choices of the portlet API 

ultimately do not reflect the requirements of the science gateway community, as 

we discuss below. 

• Science gateway portlets such as PWSCF do need to be based on reusable 

libraries and tools because they are difficult to build.  The JSR 168 portlet API is 

only concerned with managing construction of HTML views and passing 

incoming HTML form request parameters to the appropriate code logic that must 

be written by developers.  The reusability of the portlet action method’s code 

logic is outside the scope of the portlet API.  Likewise, the portlet API assumes 

portlets themselves are independent, so there is no way to take a collection of 

pre-developed portlets and express inter-dependencies between them when 

building a new science gateway. 

Our research has taken up where the portlet API leaves off.  To address the problems 

and limitations of the portlet component model for science portals, we have designed a 

fine-grained component model architecture that is implemented as an XML based, 

open, and applicable provided by the Grid Tag Libraries and Beans (GTLAB). GTLAB 

is intended to support Grid services and portal development frameworks, as well as the 

workflow engines such as Condor DAGMan and Taverna. 

Our architecture consists of end user interfaces provided through Grid tag interfaces, 

Grid bean interfaces and libraries, and metadata repositories. Grid tag interfaces may be 

used by application developers to quickly assemble new user interfaces to science 
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applications. Grid beans are capable of communicating with Grid services as well as 

matching with Grid tags. They also are independent of implementation details. The 

metadata repositories, for example, may be independently designed either as file system 

repositories, as traditional relational databases or as service-oriented context 

repositories, which are connected later through bridges and adapters. The data of these 

metadata repositories are retrieved to access archives or resubmitting similar tasks. 

In GTLAB, we have designed each Grid service access point as an XML tag widget 

that corresponds to Grid beans. In this way, we showed an extensible architecture that 

can enable external Grid beans to GTLAB. In our design, we did not disregard to use 

JSR 168 standard effort but, rather, searched for a way to adopt portlet contents as 

represented by smaller and modular components. We understand that Grid portlets will 

be utilizing workflows and component technologies, instead of defining each capability 

as separate portlet. Not only GTLAB providing modular Grid components, but also it 

shows a way to integrate and collect them in logical sequences such as directed acyclic 

graphs. Therefore, the emphasis of our research is to experiment our approach on 

different science gateways. 

Case studies lead us to identify and develop research issues. For the QuakeSim 

portal, we have remodeled its portal architecture to use Grid services by invoking 

QuakeSim applications that reside on TeraGrid nodes as opposed to previous Web 

service based approach. We also have built VLab portlets as the basis for GTLAB 

framework by dealing with complicated user interfaces creation and providing their 

transition to the Grid service clients, as well as managing metadata repositories. 
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Though GTLAB illustrated a number of important issues as presented throughout 

this thesis, it continues to be the source of interesting research problems: for example, 

providing workflow features of conditional branching and loops. As future work, we 

see that a more general and comprehensive implementation of GTLAB including Web 

2.0 features may be necessary. 

This future work addresses the issues of applying Grid tags to JavaScript (JS), AJAX 

or Web 2.0 tools. Grid tags should support client side implementations for browser 

clients. This will show that GTLAB architecture is portable among various 

technologies. The important aspect is to convert Grid beans as services that Web 2.0 

gadgets and widgets can directly access to them and utilize these services through well 

known client tools such as AJAX. Security of user credentials should be provided by 

Web services to JS clients. Multiple job submission management and metadata tracking 

should be studied. 
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Appendix A 

Schema GridTagsXMLSchema.xsd 
 
 
schema location:  C:\Documents and Settings\manacar\workspace\GridTagsBeans\GridTagsXMLSchema.xsd 
attribute form default:   
element form default:   
targetNamespace:  http://www.ogce.org/gsf/task 
   
 
Elements  
dependency  
fileoperation  
filetransfer  
handler  
jobsubmit  
multitask  
myproxy  
root  
submit  

 
 
 
element dependency 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

used by element  multitask 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
task xsd:string required           
dependsOn xsd:string required           

 

source <xsd:element name="dependency"> 
  <xsd:complexType> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="task" type="xsd:string" use="required"/> 
    <xsd:attribute name="dependsOn" type="xsd:string" use="required"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute dependency/@id 

type xsd:string 
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properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute dependency/@task 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="task" type="xsd:string" use="required"/> 

 
 
attribute dependency/@dependsOn 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="dependsOn" type="xsd:string" use="required"/> 

 
 
element fileoperation 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

used by element  multitask 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
command xsd:string required           
hostname xsd:string required           
provider xsd:string required           
port xsd:string required           
path xsd:string required           
handler xsd:string required           

 

source <xsd:element name="fileoperation"> 
  <xsd:complexType> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="command" type="xsd:string" use="required"/> 
    <xsd:attribute name="hostname" type="xsd:string" use="required"/> 
    <xsd:attribute name="provider" type="xsd:string" use="required"/> 
    <xsd:attribute name="port" type="xsd:string" use="required"/> 
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    <xsd:attribute name="path" type="xsd:string" use="required"/> 
    <xsd:attribute name="handler" type="xsd:string" use="required"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute fileoperation/@id 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute fileoperation/@command 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="command" type="xsd:string" use="required"/> 

 
 
attribute fileoperation/@hostname 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="hostname" type="xsd:string" use="required"/> 

 
 
attribute fileoperation/@provider 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="provider" type="xsd:string" use="required"/> 

 
 
attribute fileoperation/@port 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="port" type="xsd:string" use="required"/> 

 
 
attribute fileoperation/@path 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="path" type="xsd:string" use="required"/> 

 
 
attribute fileoperation/@handler 

type xsd:string 
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properties isRef  0 
use  required 

 

source <xsd:attribute name="handler" type="xsd:string" use="required"/> 

 
 
element filetransfer 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

used by element  multitask 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
from xsd:string required           
to xsd:string required           
handler xsd:string required           

 

source <xsd:element name="filetransfer"> 
  <xsd:complexType> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="from" type="xsd:string" use="required"/> 
    <xsd:attribute name="to" type="xsd:string" use="required"/> 
    <xsd:attribute name="handler" type="xsd:string" use="required"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute filetransfer/@id 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute filetransfer/@from 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="from" type="xsd:string" use="required"/> 

 
 
attribute filetransfer/@to 

type xsd:string 

properties isRef  0 
use  required 
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source <xsd:attribute name="to" type="xsd:string" use="required"/> 

 
 
attribute filetransfer/@handler 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="handler" type="xsd:string" use="required"/> 

 
 
element handler 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
action xsd:string            
actionListener xsd:string            

 

source <xsd:element name="handler"> 
  <xsd:complexType> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="action" type="xsd:string"/> 
    <xsd:attribute name="actionListener" type="xsd:string"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute handler/@id 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute handler/@action 

type xsd:string 

properties isRef  0 
 

source <xsd:attribute name="action" type="xsd:string"/> 

 
 
attribute handler/@actionListener 

type xsd:string 

properties isRef  0 
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source <xsd:attribute name="actionListener" type="xsd:string"/> 

 
 
element jobsubmit 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

used by element  multitask 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
hostname xsd:string required           
provider xsd:string required           
executable xsd:string required           
arguments xsd:string optional           
stdin xsd:string optional           
stdout xsd:string optional           
stderr xsd:string optional           
handler xsd:string required           

 

source <xsd:element name="jobsubmit"> 
  <xsd:complexType> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="hostname" type="xsd:string" use="required"/> 
    <xsd:attribute name="provider" type="xsd:string" use="required"/> 
    <xsd:attribute name="executable" type="xsd:string" use="required"/> 
    <xsd:attribute name="arguments" type="xsd:string" use="optional"/> 
    <xsd:attribute name="stdin" type="xsd:string" use="optional"/> 
    <xsd:attribute name="stdout" type="xsd:string" use="optional"/> 
    <xsd:attribute name="stderr" type="xsd:string" use="optional"/> 
    <xsd:attribute name="handler" type="xsd:string" use="required"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute jobsubmit/@id 

type xsd:string 

properties isRef  0 
use  optional 
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source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute jobsubmit/@hostname 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="hostname" type="xsd:string" use="required"/> 

 
 
attribute jobsubmit/@provider 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="provider" type="xsd:string" use="required"/> 

 
 
attribute jobsubmit/@executable 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="executable" type="xsd:string" use="required"/> 

 
 
attribute jobsubmit/@arguments 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="arguments" type="xsd:string" use="optional"/> 

 
 
attribute jobsubmit/@stdin 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="stdin" type="xsd:string" use="optional"/> 

 
 
attribute jobsubmit/@stdout 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="stdout" type="xsd:string" use="optional"/> 

 
 
attribute jobsubmit/@stderr 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="stderr" type="xsd:string" use="optional"/> 
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attribute jobsubmit/@handler 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="handler" type="xsd:string" use="required"/> 

 
 
element multitask 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

children o:myproxy o:fileoperation o:jobsubmit o:filetransfer o:dependency 

used by element  submit 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
taskname xsd:string required           
handler xsd:string required           
persistent xsd:boolean required           

 

source <xsd:element name="multitask"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element ref="o:myproxy" minOccurs="0"/> 
      <xsd:element ref="o:fileoperation" minOccurs="0" maxOccurs="unbounded"/> 
      <xsd:element ref="o:jobsubmit" minOccurs="0" maxOccurs="unbounded"/> 
      <xsd:element ref="o:filetransfer" minOccurs="0" maxOccurs="unbounded"/> 
      <xsd:element ref="o:dependency" minOccurs="0" maxOccurs="unbounded"/> 
    </xsd:sequence> 
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    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="taskname" type="xsd:string" use="required"/> 
    <xsd:attribute name="handler" type="xsd:string" use="required"/> 
    <xsd:attribute name="persistent" type="xsd:boolean" use="required"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute multitask/@id 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute multitask/@taskname 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="taskname" type="xsd:string" use="required"/> 

 
 
attribute multitask/@handler 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="handler" type="xsd:string" use="required"/> 

 
 
attribute multitask/@persistent 

type xsd:boolean 

properties isRef  0 
use  required 

 

source <xsd:attribute name="persistent" type="xsd:boolean" use="required"/> 

 
 
element myproxy 

diagram 
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namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

used by element  multitask 
 

attributes Name   Type   Use   Default   Fixed   annotation 
id xsd:string optional           
hostname xsd:string required           
port xsd:string required           
lifetime xsd:string required           
username xsd:string required           
password xsd:string required           
handler xsd:string required           

 

source <xsd:element name="myproxy"> 
  <xsd:complexType> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
    <xsd:attribute name="hostname" type="xsd:string" use="required"/> 
    <xsd:attribute name="port" type="xsd:string" use="required"/> 
    <xsd:attribute name="lifetime" type="xsd:string" use="required"/> 
    <xsd:attribute name="username" type="xsd:string" use="required"/> 
    <xsd:attribute name="password" type="xsd:string" use="required"/> 
    <xsd:attribute name="handler" type="xsd:string" use="required"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute myproxy/@id 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 

 
 
attribute myproxy/@hostname 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="hostname" type="xsd:string" use="required"/> 

 
 
attribute myproxy/@port 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="port" type="xsd:string" use="required"/> 

 
 
attribute myproxy/@lifetime 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="lifetime" type="xsd:string" use="required"/> 
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attribute myproxy/@username 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="username" type="xsd:string" use="required"/> 

 
 
attribute myproxy/@password 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="password" type="xsd:string" use="required"/> 

 
 
attribute myproxy/@handler 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="handler" type="xsd:string" use="required"/> 

 
 
element root 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
 

children o:submit 

source <xsd:element name="root"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element ref="o:submit"/> 
    </xsd:sequence> 
  </xsd:complexType> 
</xsd:element> 

 
 
element submit 

diagram 

 

namespace http://www.ogce.org/gsf/task 

properties content  complex 
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children o:multitask 

used by element  root 
 

attributes Name   Type   Use   Default   Fixed   annotation 
action xsd:string required           
id xsd:string optional           

 

source <xsd:element name="submit"> 
  <xsd:complexType> 
    <xsd:sequence> 
      <xsd:element ref="o:multitask"/> 
    </xsd:sequence> 
    <xsd:attribute name="action" type="xsd:string" use="required"/> 
    <xsd:attribute name="id" type="xsd:string" use="optional"/> 
  </xsd:complexType> 
</xsd:element> 

 
 
attribute submit/@action 

type xsd:string 

properties isRef  0 
use  required 

 

source <xsd:attribute name="action" type="xsd:string" use="required"/> 

 
 
attribute submit/@id 

type xsd:string 

properties isRef  0 
use  optional 

 

source <xsd:attribute name="id" type="xsd:string" use="optional"/> 
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Appendix B 

Table 1. Attributes to dependency 

 

Attribute name Required Description 

id yes String: component id 

task yes String: task component name 

dependsOn yes String: task component that depends on 

   

 

Table 2. Attributes to myproxy 

 

Attribute name Required Description 

id yes String: component id 

hostname yes String: myproxy server name 

port yes String: myproxy port number (default is 7512) 

lifetime yes String: myproxy lifetime (default is 2 hours) 

Username yes String: user name for stored credential 

password yes String: password for stored credential 

handler no String: defines bean method to submit this 

component 

 

Table 3. Attributes to multitask 

 

Attribute name Required Description 

id yes String: component id 

taskname yes String: task name is for multitask 

persistent no String: stores task information  

handler no String: defines bean method to submit this 

component 

 

Table 4. Attributes to fileoperation 

 

Attribute name Required Description 

id yes String: component id 

hostname yes String: gridftp server name 

port yes String: gridftp port number (default is 2811) 

provider yes String: gridftp provider name (default is ‘gridftp’) 

path yes String: directory location on the local file system 

command yes String: file operation (e.g. ls, mkdir) 

handler no String: defines bean method to submit this 

component 
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Table 5. Attributes to jobsubmit 

 

Attribute name Required Description 

id yes String: component id 

hostname yes String: GRAM server name 

provider  yes String: GT provider name (default is ‘GT2’) 

executable yes String: executable command or script name 

arguments yes String: arguments of the command or the script 

stdin yes String: standard input file name for the command 

stdout yes String: standard output file name for the command 

stderr yes String: standard error file name for the command 

handler no String: defines bean method to submit this 

component 

 

Table 6. Attributes to filetransfer 

 

Attribute name Required Description 

id yes String: component id 

from yes String: file location on source gridftp server 

to yes String: file location on target gridftp server  

handler no String: defines bean method to submit this 

component 

 

Table 7. Attributes to submit 

 

Attribute name Required Description 

id yes String: component id 

action yes String: defines bean method to submit this 

component 

actionListener yes String: defines action listener method  

 

Table 8. Attributes to handler 

 

Attribute name Required Description 

id yes String: component id 

action yes String: defines bean method to submit this 

component 

actionListener yes String: defines action listener method  
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