
A COMPONENT FRAMEWORK FOR

BUILDING WEB SCIENCE GATEWAYS

AND PORTALS

MEHMET AKIF NACAR

Submitted to the faculty of the Indiana University Graduate School

in partial fulfillment of requirements

for the degree

Doctoral of Philosophy

in the Department of Computer Science

Indiana University

November 2007

 ii

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

Doctoral Committee

Geoffrey Fox (Principal Advisor), Ph.D

Donald McMullen, Ph.D

Minaxi Gupta, Ph.D

David Leake, Ph.D

November 27, 2007

 iii

© 2007

Mehmet Akif Nacar

All Rights Reserved

 iv

Abstract

Portlet-based Grid portals have become a crucial part of the international distributed

computing infrastructure to support computational science (“cyberinfrastructure”) by

providing component-based problem solving environments for scientists. Although

Web portals are intended to provide user-friendly environments with easy-to-use

interfaces, the development of portals and their portlet components is time consuming.

We aim to address this problem by providing reusable components for rapid portlet

development. Our approach, Grid Tag Libraries and Beans (GTLAB), encapsulates

common Grid operations with reusable XML tags, providing a dramatically simplified

programming interface to common cyberinfrastructure services. GTLAB also provides

a way for creating composite tasks that models the requirements of computational

science portals. In addition to standard Grid job submission and remote file operation

tags, we also provide management and monitoring capabilities for Grid tasks. This

system can persistently store job metadata, which results in a permanent storage for

archiving and reference.

In this dissertation, we have studied and observed two distinct science gateways as

use cases. First, the QuakeSim portal is a problem solving environment to develop a

solid Earth science framework for modeling and understanding earthquakes. In this

study, we have proposed an evolutionary approach to allow TeraGrid usage in addition

to clusters for QuakeSim portal. Second, VLab is a Grid and Web Service-based system

for enabling distributed and collaborative computational chemistry and material science

applications for the study of planetary materials. The requirements of VLab include job

preparation and submission, job monitoring, data storage and analysis.

 v

Although GTLAB provides support for simple Grid workflows, we must also

investigate the problem of integration with existing workflow systems. We have thus

extended GTLAB to support the widely used Condor DAGMan and Taverna workflow

systems. These extended tags demonstrate that large workflows can be integrated

within Grid portlets without burdening of developers.

 vi

Table of Contents

1 INTRODUCTION... 1

1.1 MOTIVATION ... 6

1.2 PROBLEM STATEMENT .. 7

1.3 RESEARCH ISSUES ... 10

1.4 GRID TAG LIBRARIES .. 13

1.5 CONTRIBUTIONS OF THIS RESEARCH ... 14

1.6 ORGANIZATION OF THE THESIS ... 16

2 BACKGROUND ... 18

2.1 OVERVIEW OF GRID COMPUTING ENVIRONMENTS .. 18

2.1.1 GCE Shell ... 19

2.1.2 GPDK .. 19

2.1.3 Gateway System.. 20

2.1.4 GridSphere Portal Framework .. 20

2.1.5 OGCE Portlets .. 21

2.2 TYPICAL GRID PORTAL USAGE SCENARIOS .. 21

2.2.1 User scenario for VLab portal... 22

2.2.2 User scenario for scientific workflows ... 24

2.2.3 User scenario for access control of portlets .. 24

2.2.4 User scenario for Web 2.0 portals... 25

2.3 GRID PROGRAMMING INTERFACES .. 26

2.3.1 Java Commodity Grid Kit ... 26

 vii

2.3.2 Condor Web Services ... 26

2.3.3 Simple API for Grid Applications (SAGA) .. 27

3 SURVEY OF TECHNOLOGIES .. 28

3.1 INTRODUCTION ... 28

3.2 GRID PORTALS .. 28

3.3 OGSA AND WSRF SERVICES .. 30

3.3.1 Globus job management services.. 31

3.3.2 Globus File Management Service ... 31

3.3.3 Monitoring and Discovery Service ... 31

3.3.4 Condor... 31

3.3.5 Credential management service .. 32

3.4 WEB SERVICES .. 32

3.5 PORTAL FRAMEWORKS AND THEIR COMPONENTS .. 34

3.5.1 Shortcomings of JSR 168.. 35

3.6 GRID ACCOUNT MANAGEMENT ... 36

3.7 GRID AUTHORIZATION INFRASTRUCTURES .. 37

3.8 WEB APPLICATION FRAMEWORKS ... 38

3.8.1 Java Server Faces (JSF) .. 39

3.8.2 Web Interfaces and JSF .. 39

3.8.3 JSF Portlets ... 40

3.8.4 JSF portlet bridge .. 40

4 APPLICATIONS .. 42

4.1 INTRODUCTION ... 42

 viii

4.2 VLAB: VIRTUAL LABORATORY FOR EARTH AND PLANETARY MATERIALS

PORTAL ... 43

4.3 QUAKESIM PORTAL .. 47

4.3.1 QuakeSim Gateway Architecture ... 48

4.3.2 QuakeSim Portlets .. 51

4.4 CIMA: COMMON INSTRUMENT MIDDLEWARE ARCHITECTURE PORTAL 52

4.4.1 Requirements .. 54

4.5 BIG RED PORTAL .. 57

4.5.1 Integrating GTLAB with Big Red Portlets ... 58

4.6 SUMMARY ... 59

5 ARCHITECTURE OF GRID TAG LIBRARIES ... 60

5.1 INTRODUCTION ... 60

5.2 DESIGN ... 62

5.3 GRID TAGS .. 64

5.4 GRID TAG SCHEMAS .. 65

5.5 USE CASE EXAMPLE .. 66

5.6 DESIGN AND IMPLEMENTATION OF GRID TAGS ... 68

5.7 HANDLER TAG MANAGES MONITORING OF THE JOBS ... 69

5.8 GRID BEANS ... 72

5.9 SESSION MANAGEMENT .. 74

5.10 CACHING... 75

5.11 SYNCHRONOUS AND ASYNCHRONOUS ... 76

5.12 ARCHITECTURE ... 76

 ix

5.13 COMPONENT PARSER .. 78

5.14 MONITORING AND MANAGEMENT OF JOBS .. 80

5.15 METADATA MANAGEMENT ... 82

5.16 COLLECTING USER INPUT VALUES AND HANDLING NAVIGATION 83

5.17 EXPERIMENTS ... 85

5.17.1 Testing Setup .. 86

5.18 ANALYSIS OF GTLAB ARCHITECTURE ... 88

5.19 FUTURE WORKS: APPLYING GTLAB INTO WEB 2.0 90

5.19.1 Discussion ... 90

5.19.2 Web gadgets .. 92

5.20 SUMMARY ... 92

6 APPLYING WORKFLOWS TO GRID PORTALS ... 93

6.1 FOUNDATIONS OF SCIENTIFIC WORKFLOWS ... 93

6.2 IMPORTANCE OF WORKFLOWS IN GRID PORTALS .. 95

6.3 LEGACY WORKFLOWS FOR GRID SYSTEMS .. 96

6.3.1 Taverna ... 96

6.3.2 Kepler .. 97

6.3.3 Karajan .. 97

6.4 HANDLING DIRECTED ACYCLIC GRAPHS IN GTLAB .. 98

6.5 DESIGN AND ARCHITECTURE OF GTLAB WORKFLOWS 101

6.6 TAVERNA USE CASE ... 105

6.7 PERSISTENCY ISSUES OF WORKFLOWS WITHIN GTLAB 109

6.8 DISCUSSIONS AND CONCLUSION ... 109

 x

6.8.1 Discussion of Kepler and BPEL extensions ... 111

7 PORTLET ACCESS CONTROL MECHANISMS .. 112

7.1 USER ACCOUNT MANAGEMENT IN GRID PORTALS ... 113

7.1.1 Authentication ... 113

7.1.2 Authorization .. 116

7.1.3 Portal Users and Groups ... 117

7.1.4 CIMA Portlets for Partner Labs .. 120

7.2 CONTROLLING ACCESS TO GRID PORTLET CONTENTS 120

7.3 IMPLEMENTATION OF THE CIMA CRYSTALLOGRAPHY PORTAL 122

7.3.1 Requirements .. 122

7.3.2 Architecture of the CIMA Crystallography Portal 125

7.3.3 Identity Mapping between Portal and Data Manager Service 126

7.4 SUMMARY ... 127

8 CONCLUSION AND FUTURE WORKS .. 129

APPENDIX A ... 134

APPENDIX B ... 146

BIBLIOGRAPHY .. 148

 xi

List of Tables

Table 3.1 Comparison of GAMA and PURSe ... 37

Table 5.1 Attributes of multitask tag ... 71

Table 5.2 Attributes of myproxy tag .. 71

Table 5.3 Timings of GTLAB processing stages on the portal server........................... 88

Table 7.1 Sample features in CIMA portal .. 121

 xii

List of Figures

Figure 1.1 Classic three-tier architecture illustrates the portal in the client tier (left),

service middleware in the middle tier and computing and data resources in

the resource layer (right). The core of our work will address the components

used to assemble the client tier.. 3

Figure 1.2 Grid tags are used to build a sample portlet application that calls services

including: a) Myproxy service to get user credential, and b) GRAM service

to execute a script. ... 9

Figure 1.3 OGCE portlets screenshot where all Grid operations are implemented as

portlets (i.e., tabs). The portlet shown is a generic interface to Globus

GRAM middleware. .. 13

Figure 4.1 VLab portal serves to the end users by utilizing remote resources. 46

Figure 4.2 QuakeSim portal architecture with Grid services invocations of TeraGrid

nodes. .. 50

Figure 4.3 Disloc portlet page contains multi-staged jobs with DAG representation ... 51

Figure 5.1 Big picture of Grid portlets using GTLAB libraries and JSF framework 61

Figure 5.2 Grid tags are embedded into JSF view pages with visual HTML tags 62

Figure 5.3 Grid tags schema for job submission to GRAM server 66

Figure 5.4 A typical multistage Grid job involves four sub-tasks: moving an input file

to a particular execution host, submitting the job, and moving the output to a

storage host. .. 67

 xiii

Figure 5.5 The handler tag is used with <h:dataTable> to create a table of tasks and

enable cancellation actions. ... 70

Figure 5.6 Grid tag libraries are used to build a sample Grid portlet page. 74

Figure 5.7 Shows architecture of ComponentBuilderBean and its components 77

Figure 5.8 Parsing the JSF component tree that only shows tags widget 78

Figure 5.9 Each component has its own set of attributes and attributes can be given as

constant or reference value.. 79

Figure 5.10 Properties of a component stored in a JSF session during component

parsing ... 79

Figure 5.11 Sequence diagram for Grid tags and beans including user interaction. 81

Figure 5.12 JSF applications uses Web forms through lightweight Web browsers.

HTTP requests goes to the Web application on Tomcat and responses get

back to the browser. .. 85

Figure 5.13 Request processing stages and their timing in portal server....................... 87

Figure 5.14 Average response time of requests initiated by end users, Tform 89

Figure 5.15 Average network latency time in between and user and portal server 89

Figure 6.1 XML schema of multitask represents a DAG. It shows the relationship of

Grid tags by defining dependency tag in GTLAB. 101

Figure 6.2 Taverna composition of three major Grid tasks in a workflow 103

Figure 6.3 A user interacts with a workflow portlet to utilize Taverna enactor. User

provides parameters by submitting a Web form that start the chain of events

in order. ... 107

Figure 6.4 Grid portal support Taverna and PERMIS authorization schema. 109

 xiv

Figure 7.1 Snapshots of GAMA enabled CIMA portal ... 115

Figure 7.2 Relationships of CIMA portal roles, users and groups............................... 118

Figure 7.3 UserSample portlet that allows users to stepwise scan through an

experiment. .. 124

 1

Chapter 1

Introduction

Over the last decade, the improvement of Web technologies has produced e-Science

[1], in which scientific communities adopt, extend, and influence the developments of

Web computing. Grids and Grid computing [2, 3] provide the distributed computing

infrastructure (“cyberinfrastructure”) foundations for e-Science activities. Communities

want to see daily impacts of their research and arrange daily activities based on given

information. Many science applications are broadcasted over the Internet through

portals. Examples range from Earth sciences to space exploration. While Genomic

research encrypts genetic sequences of the cells in micro level, space research seeks

knowledge about the universe in largest possible scales. Scientific Web applications in

a sense monitor all the aspects of human life with instruments from microorganisms to

cosmos.

 2

The efforts of building science knowledge management environments can be

categorized in two aspects: 1) Core Grid applications that serve to construct

foundations, and 2) management of the Grid applications. Figure 1.1 illustrates three-

tier architecture that contains resource providers, middleware and portals.

Grid infrastructure is spanning multiple organizations in different administrative

domains (that is, creating “Virtual Organizations” [2]). Each autonomous intuition

provides computing resources and data capacity through organizational boundaries.

Therefore, Grid resources must respect the security and privacy concerns to tie resource

providers and scientists. Examples of large virtual organizations providing data storage,

computing power, and Grid services include TeraGrid [4], the Open Science Grid

(OSG) [5] and Enabling Grids for E-SciencE (EGEE) [6].

The Grid initiatives must provide middleware layer to access supercomputing

resources and data seamlessly. Grid middleware that is serving Grid users includes the

Coordinated TeraGrid Software and Services (CTSS) [7] on TeraGrid, the Virtual Data

Toolkit [8] on OSG, and gLite [9] on EGEE. Grid middleware services range from

security, file management, information service, and schedulers.

Grid Computing Environments (GCEs) [10, 11] provide a user view through the

client tier of computational Grid technologies. GCEs are often associated with Web

portals, but in general they may be any type of client management environment. GCEs

also come in two primary varieties: Problem Solving Environments (PSEs), which

provide custom graphical user interfaces for working with specific sets of applications,

visualization tools, etc; and shell-like system portals, which provide direct access to

Grid middleware such as f

evolve over the time. Efforts to build GCEs are now often called science gateways

Figure 1.1 Classic three-
middleware in the middle tier and computing and data resources in the resource layer (right).

The core of our work will address the components used to assemble the client tier.

There are a variety of application portals available to solve nume

Examples range from atmospheric discoveries in

Atmospheric Discoveries (

National Virtual Observatory

solving environment to develop a solid Earth science framework

3

such as file manipulation and command execution. These terms also

evolve over the time. Efforts to build GCEs are now often called science gateways

-tier architecture illustrates the portal in the client tier (lef
middleware in the middle tier and computing and data resources in the resource layer (right).

The core of our work will address the components used to assemble the client tier.

There are a variety of application portals available to solve numerous problems.

Examples range from atmospheric discoveries in Linked Environments for

Atmospheric Discoveries (LEAD) [12] to virtual observatories described in

National Virtual Observatory (NVO) [13]. The QuakeSim portal [14]

solving environment to develop a solid Earth science framework for modelling and

These terms also

evolve over the time. Efforts to build GCEs are now often called science gateways [11].

tier architecture illustrates the portal in the client tier (left), service
middleware in the middle tier and computing and data resources in the resource layer (right).

The core of our work will address the components used to assemble the client tier.

rous problems.

Linked Environments for

to virtual observatories described in the

[14] is a problem

for modelling and

 4

understanding earthquakes. The Virtual Laboratory for Material Sciences (VLab)

project [15] is an example of a science gateway for computing the properties of

planetary materials under extreme conditions and provides the specific motivating cases

for our research.

A science portal supports the work of a scientific team or community by combining

a Web portal and associated Web Services. By using a Web browser, a scientist can

access both private and shared workspaces of discipline-specific data and tools. Science

gateways are also access points to Grids of computational and data resources, allowing

a user to leverage the capability of a Grid without forcing the user to deal with the

complexity of Grid technology.

Science portals have been developed for over a decade, and much progress has been

made to standardize their architecture and component models. Many science gateway

initiatives use the so-called portlet component model, defined by the Java Specification

Request (JSR) 168 [16]. Many open source JSR 168 containers have been

implemented, with the GridSphere [17, 18] container serving as a very popular

implementation in the scientific community. Other examples include uPortal [19], Pluto

[20], Jetspeed [21], Sakai [22], LifeRay [23], JBoss [24], and eXo [25]. General

purpose, pluggable Grid portlets for remote job submission, interactions with Grid

information services, remote file management, and security credential management

have been developed by the Open Grid Computing Environments (OGCE) [26, 27]

collaboration and the Grid Portlets [28] project. Most Java-based Grid portals use the

Java COG kit [29] to build their Grid clients.

 5

Most Web applications employ server-side technologies to provide rich dynamic

content to its viewers. JSF is a dynamic Web application framework that is similar to

other dynamic Web application templates like velocity (http://velocity.apache.org),

Java Server Pages, and Spring (http://www.springframework.org). JSF provides

dynamic content using Java servlet technology. Dynamic content is generated based on

the request and response paradigm. Unlike static HTML pages, Web application

frameworks allow interaction with users. The server pages take requests, process them

and respond to the user through a Web interface. Besides its inherent virtues, we

believe that JSF is very well suited for science gateway development, as we will

discuss.

JSF applies the Model-View-Control (MVC) software design pattern [30, 31] to

decouple data models, action controllers and user interface widgets into separate

components. Within the framework of JSF, the model corresponds to a backing

JavaBean: a piece of Java code that is responsible for managing the application’s data.

The backing bean itself is typically a client to a database or a remote Web service. One

of JSF’s hallmarks is that these beans can be developed outside the JSF framework; that

is, it is not necessary to import any JSF-specific code. This means that the beans can be

reused in non-web based applications and can run on stand-alone applications. This is

accomplished through a design pattern known as “inversion of control” [30]. The

controller corresponds to a JSF servlet that manages user requests. Finally, the view

corresponds to Web interfaces of JSF. This architecture separates the data access and

user interaction. MVC encourages the reuse of backing beans within different

applications.

 6

We need a component model for User Interface (UI) matching Grid services as a

component model for Grid middleware. Portlets attached to services do not work

except in simple cases. There is no good way to link portlets and then most UI's need

workflow services. Therefore we must use tags as component model and allow multiple

tags in a portlet application. Our solution to building science gateways is providing a

modular component framework. This framework provides reusable parts (tags) to

construct portlet pages as well as composing and managing these parts.

1.1 Motivation

Scientific knowledge is shared by the community in terms of its needs and levels of

understanding. To accomplish this missions, Grid portals [32] distribute the knowledge

resources on the Web and restrict accesses to the groups of people. In that sense Grid

portals are science gateways for people ranging from researchers at national research

labs to schoolchildren. Therefore, all age groups and educational levels can access to

the information thorough science portals on demand.

In the Grid portal field there are numerous efforts to build intuitive gateways and

construct standards to build these applications using common platforms that help to

interchange the knowledge between the institutions. These developments require

computer scientists to study the Grid portals field.

Grid services vary from Globus toolkit [33], Condor [34], Unicore [35], and gLite

[9]. We want to provide generic and ready to use clients for these services. There are

efforts to provide programming level abstractions to the Grid such as Java Commodity

Grid Kit (CoG Kit) [29], Simple API for Grid Applications (SAGA) [36] and Portlet

 7

Vine [37] . One of our goals is utilizing Grid resources transparently on resources that

range from TeraGrid resources to our Gridfarm clusters at Indiana University.

The first generation Grid portals for interacting with this middleware were stovepipe

solutions to fit needs of scientists that basically have capabilities to run and manage

applications through Web applications [10]. Second generation portals are aware of the

need to build reusable software components and propose a common framework for

scientists. The Java Specification Request (JSR) 168 standard [16] and portal

frameworks provide a standard portlet specification that defines programming

interfaces and portlet container model.

The challenge for the community now is to define the third generation of Grid portal

technology. In our research we have brought the problems of second-generation portal

development on the table, and we have proposed solutions to these research area. We

have proposed to model fine-grained Grid portal components that can flexibly compose

client tier applications to Grid capabilities.

1.2 Problem Statement

The developments of emerging Web technologies leveraged Grid communities to

use Web resources efficiently in GCEs. As a result, legacy applications can be accessed

through Web interfaces. These changes have impacts on the foundations on the

applications such as preserving the access to the restricted resources. We need to

maintain the policies and rules that exist in the low level application and map them to

the Web application level smoothly. Thus, Web applications are converging to look like

 8

desktop applications over the time. Web applications must provide look and feel pages

and customization to access the back end resources.

To achieve interoperability and to avoid relying on unsustainable custom solutions,

science portals and e-Science generally follow Web specifications closely. For the

portal community, the dominant specification has been JSR 168. After completing

repeated efforts on building OGCE and QuakeSim portal [14, 38] we have learned the

shortcomings of JSR 168 consequently. An important aspect of the JSR 168 is to build

portlet components by implementing low level application program interfaces. There

are two drawbacks of this approach: i) Portlets are coarse-grained components that

wrap entire Web applications, not their functional components; and ii) portlet

implementations are not reusable if one needs to combine one or more portlet

capabilities. Consequently, we conclude science gateways have an inadequate

component framework: JSR 168 is a useful starting point by insufficient.

Our research is about a novel approach to build a better component model for Grid

portals that can enable Grid operations all in one application. Unlike the previous

OGCE Grid portlets, Grid operations can be contained in portlets with reusable widgets

as shown in the snippet at Figure 1.2. This approach adds one more layers on the JSR

168 portlet container, since it is wrapping JSR 168 programming interfaces with

reusable widgets. The new layer may cause performance degradation and latencies

because of additional processes. In our study, we will measure the latency to show

whether it is acceptable.

 9

<html>

<body>

<f:form>

<o:submit id=”test” action=”next_page” />

<o:myproxy id=”pr” hostname=”gf1.ucs.indiana.edu”

port=”7512” lifetime=”2” username=“mnacar”

password=”***” />

<o:jobsubmit id=”task” hostname=”cobalt.ncsa.teragrid.org”

provider=”GT4” executable=”/bin/ls”

stdout=”tmp/result stderr=”tmp/error” />

</o:submit>

</f:form>

</body>

</html>

Figure 1.2 Grid tags are used to build a sample portlet application that calls services including:
a) Myproxy service to get user credential, and b) GRAM service to execute a script.

There are many ways to deal with a collection of tasks in sequence. This approach

leads to workflows, and workflows are commonly used in the Grid community. The

complexity of applications and staging requirements enforce workflow usage. Grid

applications apply existing Grid workflows [39] to process sophisticated execution

flows. Our research scope covers strategies to leverage these workflow clients to

integrate to Grid portals. The problem here is to find out the correct representation of

workflow execution and monitoring within Grid portals. Workflow composition is out

of scope of our research.

 10

Another problem of portals in general is to provide access control to the portlet

contents. That is, we must consider what happens after a workflow is executed and data

is generated. This is particularly important when making a scientist’s unpublished

scientific data and computations available through Web interfaces: only the scientist

and designated collaborators should have access, although many other people will use

the portal (and the same components) to view different data sets. Portals frameworks

restrict user or group access rights on portlet components. Users will see the same

content of accessible portlets no matter what their rights are or what group they are in.

The portlet Application Programming Interface (API) does not constrain the content

access; in other words there is no policy enforcement on customizing portlet contents

per users. We have studied enforcement methods to restrict the portlet access to the

user groups such as administrators, directors, researchers, providers, customers, study

groups, students and anonymous users.

1.3 Research issues

When we are seeking solutions to the all problems listed on the problem statement,

we have raised many critical research issues that we believe contributes the field. We

will list major research problems including the level of granularity on Grid operations.

We observed these leading problems are following: a) Grids are complicated, b)

existing client tools are also too complicated (e.g., the COG), and c) portlets are not an

adequate component model for Grids. Therefore, our main research focus is about to

find correct architecture for Grid operations including proxy credential, file operations

and transfers, and job submission.

 11

The key research issue is the lack of a simple client interface to Grid services,

particularly for Grid portals. There also is the need for a component environment

compatible with Web Model-View-Controller architectures. This component model

should be extensible beyond any specific implementation.

How do we apply Grid components to Web applications to build modular portals?

There are server-side Web application frameworks to build portals. JSR 168 is one of

the standard portlet container that support servlet-based Web applications. Velocity,

Java Server Pages (JSP) [40], Struts and Java Server Faces (JSF) [41, 42] are some of

the technologies to develop portals. JSF is interesting because its [43] component-based

architecture fits better to our component model. Therefore we have chosen JSF

application framework to prototype Grid tag libraries. The detailed discussion of JSF is

given in Section 5.6. However, we are able to extend our model to any other server-side

Web framework.

One of the problems with the Grid operations is how to represent them in the context

of Web applications. Java servlets [44] already provide an API to program server-side

applications by using object oriented programming paradigm. Thus, application logic in

the context of Web applications is reusable among different applications. But there is

no way to reuse server pages in presentation logic. To come up with solutions for

building modular Web application pages, we introduce widgets as tag libraries. Tag

libraries encapsulate reusable Grid components so that allowing an extensible

architecture for future additions.

Another interesting research problem is applying workflows and their dependencies

in a generic way to Grid portals. There are different approaches to apply workflows on

 12

demand. Some science disciplines closely rely on composing workflows such as life

science workflows defined in [45]. Thus, they need graphical tools to generate complex

workflows easily. Other types of scientists usually work on the well-established

workflows composed by workflow authors [46]. They only need to enact and monitor

the workflows. Depending on the nature of our case studies, we have focused on the

first type of workflow demands by implementing graphs. Then we studied workflow

enactment and monitoring integrated into Grid portals.

How do we handle and identify the jobs within a user context? One of the research

problems we have to deal with is user metadata management. For example, a user

session last from a user logs into a portal until user logs out or session lifetime expired

or browser window closed. We needed to have mechanism to manage user metadata for

tracking Grid jobs that running on Grid servers. Therefore we need to persist and store

job metadata within user’s context both archiving and reusing reasons.

We have identified another interesting research issue in the scope of portlet content

authorization, when we developed the Common Instrument Middleware Architecture

(CIMA) [47] portal. We need to find out how we can deal with user access rights and

groups in the context of collaborative environments. There are authorization

frameworks that comply with these requirements. But the problem is portals do not

apply any of this authorization schemes in the scope of portlet contents. We have

worked on CIMA case to find solutions that are explained in Section 7.3.

 13

1.4 Grid Tag Libraries

Grid Tag Libraries and Beans (GTLAB) [15, 48] provide a set of JSF tag libraries

for Grid portal development. This library encapsulates atomic Grid operations as well

as multi-staged operations. We explain GTLAB component model and its job

management capabilities in Chapter 5.

Figure 1.3 OGCE portlets screenshot where all Grid operations are implemented as portlets
(i.e., tabs). The portlet shown is a generic interface to Globus GRAM middleware.

Although OGCE portlets are functionally similar to GTLAB, OGCE portlets are

based on standard Web applications and portlet API. Portlet API defines a specification

 14

[16] for portlet developers to reuse portlets among different portal frameworks such as

GridSphere, Liferay and Jetspeed. Thus, Application developers have to customize the

portlets to comply with specific needs of the gateways. Another aspect of OGCE is that

the Grid capabilities are separate portlet applications in Figure 1.3. Developers need to

assemble several portlets to get workflow capabilities. The problem is that portlets are

not composable elements. They are independent Web applications that live in a

container. It is not possible to express dependencies for example between portlets. All

these efforts require substantial effort of programming. The developers need to reuse

and modify some of the codes, view pages, configuration and deployment descriptors.

On the other hand, GTLAB enables all capabilities within a Web application that

requires minor customization on the view pages. All other APIs, libraries, and

deployment descriptors will be the same.

To provide a component model for Grid portals, we must provide abstract and

extensible interfaces and APIs. The advantage of this approach is that new tags and

beans can be added by deriving the interfaces. For example, Condor and Taverna

support can be added in the same way.

1.5 Contributions of this research

The major contribution of this thesis is to provide a component framework for

science gateways. We have designed, developed and applied such a framework through

several science gateways in various fields. We have studied the problems and our

approaches to the solutions by designing Grid tag libraries that are the building blocks

of the Grid portals. Grid tags are reusable and customizable on portal platforms instead

 15

of re-implementing all capabilities for each portal instance repeatedly. We must

therefore design Grid operations as components that application developers can get

them together to build Grid portals. This work is discussed in Section 5.2.

Aggregation of services and capabilities requires control over the flow of the

execution which in sense enforces us to match workflow mechanisms to the portal.

Grid portals naturally require one or more Grid operations running in a sequence that is

defined in dependency rules. Generally simple flow controls can be represented as a

DAG. We also have investigated applications going beyond simple DAGs with the full-

fledged workflows. The example usage cases may include using filters to refine data,

orchestrating Web services and Grid services within a context of workflow. This work

is discussed in Section 6.6.

Grid tag libraries framework manages user accounts within portal sessions. User

sessions are able to list ongoing jobs from previous sessions. Metadata and status

information can be monitored by the Grid users.

Persistency feature stores and archives metadata information about Grid tasks in the

permanent storages for each user. Although metadata information is stored for

archiving, they are also used for resubmitting the same parameters for repeated

experiments. Collecting all these features together, Grid tag libraries provide a

component framework for Grid community.

We have experienced that Grid tag libraries provide rapid development for

application programmers without any additional overhead on runtime. For the VLab

portal we have composed DAGs for the several VLab usage scenarios. Examples

include

 16

• Collecting input parameters and files needed to run computational experiments.

• Moving output files and staging them to visualization services and monitoring

them in overall.

We also have applied Grid tags to QuakeSim Eartquake science portal to run Disloc

[49] and Geofest [50] applications and monitor the progress of these simulations and

manipulate output data to generate mash-ups plots and visualizations.

We have summarized the Grid portal efforts of scientific communities including

VLab, CIMA and QuakeSim. These uses cases have shown that similar issues and

solutions are applicable to different community requirements. Our generic Grid tags

have been applied to these portlets by adjusting configuration and customization

principles for each case. Therefore we have observed rapid development of these

portals.

1.6 Organization of the Thesis

The organization of the rest of this thesis is as follows:

Chapter 2 surveys the state of the art technologies used within science gateways

literature and gives the summary of terminologies.

 Chapter 3 builds background on Grid computing environments generally. It

summarizes Grid and Web services as gateway to virtual organizations. We also

evaluate Grid portal approaches and techniques that used in the past. We also

summarize the motivating user scenarios to Grid portals.

Chapter 4 mentions about case studies that we have developed as Grid portals.

VLab, CIMA and QuakeSim portals are our major applications.

 17

Chapter 5 presents the foundations of Grid Tag library approach and evaluates it in

architectural perspective. We mention about design principles of Grid tags and beans.

We identify the modules of Grid tags are: session manager, component parser. We also

showed that how Grid tags deal with DAGs and workflows and handle persistency and

archiving.

Chapter 6 covers workflow and DAG management for various Grid workflow

mechanisms including OGSA services, Condor DAGMan and Taverna.

Chapter 7 mentions about access control mechanisms on portlet contents and our

solution to the CIMA portal problem.

Chapter 8 summarizes the work done in this thesis, highlights major contributions,

discusses possible extensions of Grid tag libraries, and presents future directions for our

research.

 18

Chapter 2

Background

2.1 Overview of Grid Computing Environments

Grid Computing Environments (GCEs) [10] provide a user view of computational

Grid technologies. GCEs are often associated with Web portals, but in general it may

be any type of client management environment. Web portals are accessible gateways to

the resources and services. GCEs come in two primary varieties:

• Problem Solving Environments (PSEs), which provide custom interfaces for

working with specific sets of applications, visualization tools, etc; and

• Shell-like system portals, which provide direct access to basic commands such as

file manipulation and command execution.

This situation began to change rapidly in early 2002 with the emergence of two

important concepts: reusable portal components (portlets) and Web service

 19

architectures. Java portlet components became standardized with the Java

Specification Request JSR 168 [16]. Web services architectures are summarized in

[51]. Modern portal systems have adopted these two cornerstones and follow a general

architecture. Standard-based portlets provide reusable functional components that can

be shared between different portal installations. Web services decouple the portal

functionality from its presentation layer.

We will summarize the efforts from building GCEs to science gateway in last

decade.

2.1.1 GCE Shell

We describe the design and features of our Grid Computing Environments Shell

system, or GCEShell [52]. We view computing Grids as providing essentially a

globally scalable distributed operating system that exposes low level programming

APIs. GCEShell environments are separated from specific user interface rendering.

GCEShell consider here a general engine for managing Grid and Web service clients.

This GCEShell engine is initially implemented as a command line interface, is inspired

by the Unix shell environments [53], which provide a more user friendly environment

for interacting with the operating system than programming directly with system level

libraries.

2.1.2 GPDK

The Grid Portal Development Kit (GPDK) [54] provides classical three-tiered

architecture for middleware applications. GPDK operates Model View Controller

(MVC) [30] to separate control and presentation from the application logic for

 20

accessing Grid services. GPDK utilizes large-scale scientific applications through Web

interface. GPDK has its own Portal Engine (PE) that redirects user requests to the

server and responses from the server. PE implements essential user management,

application management and presentation services for GPDK portal.

2.1.3 Gateway System

Gateway system [55] is one of the early computational portal effort that provides

seamlessly secure and uniform access to computational backend services. It applies

three-tiered architecture by supporting distributed component-based middleware.

Gateway Web portal implement services including user interface, metadata, security

and shared visualization.

2.1.4 GridSphere Portal Framework

Until portlet concept started with JSR 168, there were stovepipe Web applications

for Grid services. GridSphere [17, 18] is one of the first implementations of JSR 168,

along with uPortal [19] and Liferay [23]. GridSphere can be used to build Web portals

that are compatible with JSR 168 portlet container standards. GridSphere additionally

provides Grid portlets that access to a number of services. GridSphere’s Grid portlets

provide a set of capabilities that supports Grid services available by the Globus toolkit,

including Globus Resource Allocation Manager (GRAM) [56], GridFtp [57],

Monitoring and Discovery System (MDS) [58], MyProxy [59], Web Service Resource

Framework (WSRF) [60] for GT4 and Open Grid Services Architecture (OGSA) [61].

GridSphere container additionally provides portlet services for Grid. Thus, GridSphere

Grid portlets are strictly dependent on the GridSphere portal framework; as a result

 21

these portlets are not portable among portal containers. However, Vine project [37] is

trying to decouple Grid portlets from GridSphere. This effort is extensible for stand-

alone applications through Grid portlets.

2.1.5 OGCE Portlets

OGCE portlets [27] are built on Velocity and provide access to common Grid

services through the Java CoG abstraction layer [62]. OGCE also provides portlets for

Condor and Storage Resource Broker (SRB) services [56]. These portlets are compliant

with JSR 168 and portable among portal frameworks. For example, one can deploy

OGCE portlets on either GridSphere or uPortal. Each portlet provides a single Grid

capability. JSR 168 does not support inter-portlet communication in its specification;

however, OGCE portlets has simple in-memory hash-tables that share session data

between portlets. This is typically used to access proxy credentials.

2.2 Typical Grid Portal Usage Scenarios

Grid portals address wide science community problems ranging from atmospheric

discoveries to virtual observatories. There are various types of users needed to be

served. There are also numerous applications to being utilized within portal

environment. To overcome these problems, there are different types of Grid portal

approaches exist starting from GPDK, the following OGCE and Grid portlets of

GridSphere.

In this chapter we discuss several different use cases with scenarios to build a Grid

portal. A science gateway building process starts with demands from research/science

communities, such as if they have long running applications in their lab and they want

 22

to expose these applications to the world and to observe their impact. They need to use

the Web and broadcast the dynamic information to international communities. This

evaluation is a burdening transition. First, Grid portals need to design efficient

interfaces to enable scientists to do their work more effectively. Second, they need to

advertise their backend services and make them available through standard interfaces

like Web services. Third, when they are doing all this web development, they also need

to keep their services and data secure. In this case, they need to enforce policies for user

authentication and to describe access rights of users. These are classic Computer

Science problems, but they become much more difficult in distributed environments.

Grid community wants to discuss problems at appropriate scope levels. For instance,

Grid providers have problems to publish the services on broad platforms, Grid users

willing to access capabilities that are aggregated on a gateway and application

developers wants to comply all these needs. Thus, Grid architects have to come up with

solutions to these issues in great detail, although they need to provide high level tools.

The successful practices and useful science gateways came out by following the

requests mentioned before. For example, LEAD, NVO, VLab, QuakeSim, and CIMA

portal can be considered that accomplished successfully. There are success stories

about these portals in applications chapter.

2.2.1 User scenario for VLab portal

VLab portal is primarily focused on computational material science environments,

by collaborating scientists, sharing information and keeping repositories. want to

support the Web technologies for easy to use and portable environments. Plane-Wave

Self-Consistent Fields (PWscf) [63], part of the Quantum Espresso suite, is used to do

 23

simulations for computational material science. It is desirable to make PWscf into a

gateway because PWscf requires challenging processes. These processes include

computational experiment preparation, running applications and evaluating results

either in the visual or non-visual environments. Our main contribution to VLab is

managing the complicated flow control of processes by the Web interfaces.

Any given tasks might involve input file generation, code submission, data analysis,

and visualization. These tasks are often linked and have dependencies among them. A

need thus arises for a workflow and associated software, such as a workflow tags.

Workflows might themselves be composed of simpler workflows. An example that

illustrates the PWscf job submissions in section 4.2.

After we described the community demands, we have evaluated different Web

application frameworks and portal frameworks. We have found GridSphere and JSF are

the best candidates. Because JSF provide component based Web environment

compared to equivalents JSP and Velocity. GridSphere provide JSR 168 standard

portlet component model with a robust framework, well supported and maintained.

Then we have started thinking to develop fine grained component model to build

portlets out of reusable tags. This improvement guarantees less cost and time

contribution and rapid development.

We have studied security extremes on the CIMA portal case, besides application

management concerns.

 24

2.2.2 User scenario for scientific workflows

Users are looking from their specific perspective. When you talked to people from

different communities, you will see the problems and concerns are similar. We can

group these concerns based on our observations as following:

1. Efficient user interface design

2. Manage services and applications

3. Follow up the progress

4. Display the results

5. Manage all of the above in a workflow

6. User account management

These demands are common and there are common solutions to these problems.

PSEs, Grid portals and science gateways all seek solutions to these issues. There are

practice of submitting jobs, account management, interface design and display

technologies available. But we wanted to introduce supporting workflows that tied into

Web application framework as components. Thus, we sketched a solution to all

possible demands from different communities. We applied an abstract component

model which is tag libraries. For example, we can design interface and workflow for

VLab people and deploy it as a science gateway. Similarly, we can design a different

interface and workflow by using the same component model and make CIMA science

gateway available.

2.2.3 User scenario for access control of portlets

CIMA users collaborate on crystal sample data such as crystallographers giving

feedback for the samples from different labs. There are crystal owners, labs, and

 25

students on CIMA portal. Crystal owners are responsible for publishing samples and

their data. Crystallographer analyze and classify the samples, users can see their own

samples and the others’ samples unless they are private. Crystallography labs are

responsible for broadcasting video and lab conditions real-time. Students who demand

all the capabilities on the portal to understand crystal features. In some cases, students

will replace with pharmaceutical companies that demand crystal analysis.

CIMA users have roles when they registered to the portal in first place. Portal

administrators assign the users to the relevant groups. CIMA roles and groups restrict

user access rights to the resources. Thus, every other user can see different sample data

on their window, and they can customize display on demand. To this extent, CIMA

portal is a science gateway to Crystallography people that they can share data and make

collaboration on the data.

2.2.4 User scenario for Web 2.0 portals

In this aspect, we will evaluate Web 2.0 usage cases to build portals. Most of the

portal engines are heavyweight server page applications such as JSP, JSF, and Struts.

Google iGoogle [64] and Netvibes [65] bring new portal environments to the Web.

Web technologies usually constructed on request/response paradigm and support

synchronous communication. Web 2.0 techniques not only support request/response

model, but also enable asynchronous communication. Thus, Web pages can handle

events occurred similar in desktop environments. Web 2.0 methods also brought new

components called Web gadgets that integrated to the desktop environment. Gadgets

are easy to develop and useful tools that binds Web features to user desktop.

 26

In one step further, we want to build Grid portals out of Web 2.0 widgets. Thus, Grid

portals run as thin clients on the client side browsers. Grid gadgets will exist in public

repositories and the users can integrate these features to their portal pages with no

hassle. As Web 2.0 tools growing up, we need to adapt existing security methods to

protect Grid resources without any breaches. So far Grid servers apply tight security

policies and mechanisms to Grid services. Gadgets also should support these security

measures to end up with integrity.

2.3 Grid programming interfaces

2.3.1 Java Commodity Grid Kit

Java Commodity Grid (CoG) Kit [66] enable Grid users, Grid application

developers, and Grid administrators to utilize, program, and control Grids from a

higher-level framework. Java CoG Kit allow for easy and rapid Grid application

development. It also encourages collaborative code reuse and avoids the duplication of

effort among problem solving environments, science portals, and Grid middleware.

OGSA Grid services are interfaced by Java CoG abstractions [62]. These

programming interfaces have capabilities to generate proxy certificates, submit jobs,

transfer files and make file operations. They also provide composite task submissions

and their handling. We use Java CoG abstractions to build OGSA based Grid clients.

2.3.2 Condor Web Services

Condor provides a Web services interface called Birdbath [67]. Birdbath aims to

augment some of the core Condor daemons with Simple Object Access Protocol

(SOAP) [68] interfaces so that they can be queried and controlled through programs

 27

other than the standard Condor command-line tools. This provides an XML abstraction

of the programming interfaces that can be bound to any programming language such as

Java. Therefore, Birdbath client stubs can be generated from the Birdbath Web service

interface. We have built Birdbath client stubs as an API to program Condor Grids.

2.3.3 Simple API for Grid Applications (SAGA)

SAGA [36] defines a Grid programming API on top of Grid middleware. It aims to

abstract Grid Middleware accesses and provide a common programming environment.

Such Grid services are Globus, Condor [69], Unicore [35] and Secure Shell (SSH) [70]

clients. This approach adds an additional layer in between Grid middleware and clients.

They claim that the cost of this layer is tolerable in compare to benefit. They provide

task processing model including DAG representation. SAGA differs from Java CoG Kit

by providing programming language independent API.

 28

Chapter 3

Survey of technologies

3.1 Introduction

In this chapter we review state of the art science gateways and best practice of

technologies. Various important specifications and industry standards exist, and these

must serve as the starting point for our work in Grid portal area. The next sections

summarize Grid, Grid portals, and Web services technologies. Portal frameworks and

portlet standards are reviewed in the later sections. We then review Web application

frameworks after Grid account management.

3.2 Grid Portals

Grid portals [32] are science gateways for providing scientists a problem solving

environment in which they execute distributed Grid applications from Web browsers,

desktop tools, or mobile devices. Grid Portals provide seamless access to Grid services

and resources. However, as science gateway evolves, novice users are supported in

 29

broad spectrum to feel the impact of Science portals. Grid portals have advantages as

following: a) provide single point of access to distributed information and services, b)

utilize Grid services on behalf of the user, c) endure environment changes at remote

hosts such as policies sometimes differ and allocations of servers change.

In early stages of building science portals, stovepipe solutions have been used to

build Web interfaces for Grid portals. But the usage of emerging technologies among

Grid community required them to adapt portlet component model for Grid portals.

A number of Grid portals exist including QuakeSim portal for earthquake sciences,

VLab portal for Material Sciences, TeraGrid User Portal [71] for managing TeraGrid

resources and LEAD portal for atmospheric discoveries. Grid portals utilize Grid

resources, services and data on virtual organizations. Grid portals [32] address the

problems of building Web applications to enable virtual organizations on the Web.

These problems can be summarized as below:

• Security services

• File transfer management

• Job management

• Accessing to metadata services

• Resource sharing

Grid portal efforts generally have focused on Grid portlets. Grid services are

wrapped by equivalent client components that are called Grid portlets. Grid portlets

generally points out solutions can be summarized below:

• Supporting portlet development

• Simplifying the development of Grid clients

 30

• Integrating collaboration tools to support user communities

• Developing supplemental Grid services to manage science applications and data.

3.3 OGSA and WSRF services

Open Grid Service Architecture (OGSA) [3] is a comprehensive architecture for the

Grid based on Grid services and Web services. Web Services Resource Framework

(WSRF) [60] is a set of specification by OASIS [72]. These specifications describe how

to implement OGSA using Web services. Globus toolkit (GT) [33, 61] is one of the

well known Grid service providers that support OGSA (GT3) and WSRF (GT4) based

services . Virtual organizations (VO) can be built by using GT. VOs are either manages

clusters on the systems where machines are locally located or VOs can construct a Grid

out of several other VOs as well. The major problem of constructing Grid among

different administrative domains is the requirement of major security policy

enforcement. GT introduces Globus Security Infrastructure (GSI) [73] security

mechanism that is credential based security that uses X.509 certificates. In this

approach, there two types of certificates: 1) resource (or see terminology) certificate, 2)

user certificate. All certificates are created and signed by Certificate Authorities (CA).

There is CA signing hierarchy to allow different administrative domains to trust. User

certificates are required to access VOs. Users also are registered to grid-map file which

is an access control file for the Grid. Grid services have to comply with GSI security.

Starting in 2001, Globus team released GT2 release and the following major releases

respectively GT3 and GT4. GT4 services are provided on Web services framework.

Globus services are listed as following: GRAM, MDS, and GridFtp.

 31

3.3.1 Globus job management services

GRAM service enables Linux based systems to run remote scripts by using daemons

called Gatekeeper. Web Service GRAM (WS-GRAM) service differentiates from non

WS-GRAM services by using ‘sudo’ accesses on Linux. GRAM service basically runs

any command line script on behalf of the user. To abstract command line shell, they

have introduced RSL [2] description language. The disadvantage of GRAM is to use

socket connections that sometimes causes problems when the systems use firewalls.

3.3.2 Globus File Management Service

Another crucial service is to transfer files between remote hosts so called GridFtp. It

is a FTP protocol that builds GSI security on top of it. GridFtp allows third party file

transfers as well as file operations such as making directories, renaming files, deleting

files etc.

3.3.3 Monitoring and Discovery Service

MDS provide metadata information about Grid system. In other words, MDS

catalogs resource information with an annotation schema. This service gives users

information about system maintenance, number of machines on the Grid, the load of

system, available compute power, amount of data storage etc.

3.3.4 Condor

Condor [2] services are specialized providing compute intensive resources for high

throughput computing. Condor can utilize Grid resources across administrative

boundaries. Condor-G [69] incorporates Grid technologies and provides

 32

interoperability with VOs are managed by Globus. However Condor is only available

on the shell environments and being managed by using command line scripts. This

drawback makes Condor with platform dependent. To allow platform decoupling, they

have used Web services and have provided Birdbath [2] services. Thus, using Birdbath

service interface, you can generate client stubs for any platform such as Java, Python,

and C#.

Although Condor-G allows user submitting jobs to run on the high performance

resources, it does not support multiple job submissions. To overcome this side effect

they have introduce Condor DAGMan [2] to compose DAG graphs among Condor

resources.

3.3.5 Credential management service

MyProxy is a credential repository introduced by [2]. MyProxy stores credentials on

behalf of users in repositories. When user wants to use its credential, it gets the

credential by using username password pairs different than certificate pairs. MyProxy

prevents to type credential password frequently.

3.4 Web services

Web services provide a standard means of interoperability among software

applications and frameworks which are called services. Web services interactions can

be done using message exchanges between client and server. As a result Web services

utilize request/response paradigm by applying Simple Object Access Protocol (SOAP)

[68] protocol on the wire. A more general definition of Web services quoted below

 33

A Web service is a software system identified by a URI, whose public interfaces and

bindings are defined and described using XML. Its definition can be discovered by

other software systems. These systems may then interact with the Web service in a

manner prescribed by its definition, using XML based messages conveyed by internet

protocols [51].

Web services are defined within language of Web Services Description Language

(WSDL) [74] that is the standard Web services description language. WSDL describes

the location of services, types of ports, method descriptions, types of messages so on.

WSDL is a platform independent XML document which Web services clients can be

created from. Therefore, many different clients can talk to Web service using WSDL

description through SOAP channels.

SOAP is a wire transport protocol on top of Transport Control Protocol (TCP) layer.

SOAP basically provide request/response paradigm by using message envelopes. Each

message is packaged in an envelope with a return address. Envelopes contain the

message body. When the message arrived at the service location, SOAP engine

encrypts the envelopes and extracts the message itself for the application.

Web services are used in numerous distributed applications. There are services

available all sorts of applications like industrial, commercial and academic. To discover

available services, Universal Description Discovery and Integration (UDDI) [75] is

defined to advertise services. The clients search through UDDI repositories to explore

new services or similar services what they are looking for.

 34

Apache Axis [76] is a useful Web services framework that runs SOAP provider and

Web services interfaces. Axis provides tools to build and deploy services. Axis also

provides tools for clients to generate stubs for WSDL interfaces.

3.5 Portal frameworks and their components

Web-based portals leverage personalized content and provide access to backend

resources. First of all, we need to distinguish portals and portal frameworks. Portals are

deployed instances of portal software frameworks that are adopted for specific

application or science Grid. For instance, VLab [2] and CIMA [2] portal projects have

adopted GridSphere as a framework, but many other Java frameworks exist, such as

uPortal, Jetspeed [21], eXo [77], Liferay, and so on. It is desirable to be able to

exchange software components between portals and to be able to swap frameworks

(e.g. GridSphere for Jetspeed2). Portal frameworks utilize various components known

as portlets. Portal frameworks plug these capabilities within deployment descriptors for

these portlet Web applications. The framework provides a portlet container and portal

specific capabilities such as login, access management, and layout. The Java JSR 168

specification provides the means for building standard portlet frameworks and portlet

components.

JSR 168 defines a Java API for portlet development and provides portlet lifecycle

management. Portlet Web applications are interchangeably used among portal

frameworks such as GridSphere, uPortal, Jetspeed2, and others: one may use the same

portlet Web applications without modifying the application code. Portal frameworks do

 35

require portlet registration/deployment in a container specific procedure, as well as

some container specific modifications to the Web application’s configuration file.

JSR 168 portlets generates markups from different applications such as from

databases, scripts and Web services. All these markup elements are shown as in HTML

by using MVC style Web application languages like JSF, JSP, Spring, and Velocity.

Each portlet application renders an HTML markup fragment for presentation. Portal

framework aggregates portlet markups a unified style and display them in one Web

page.

3.5.1 Shortcomings of JSR 168

JSR 168 has from our point of view several significant shortcomings. JSR 168 does

not standardize description of users, groups and roles. Thus, portal frameworks provide

their own style of user and group concepts that may cause mapping problems. We have

faced such kinds of problem with the CIMA portal. More importantly, these

components and others are not clearly defined as Web services. This creates problems

when using the portal as a front end to Grids and Web service oriented science

applications. Another major shortcoming of the JSR 168 specification is that it does

not provide a sophisticated development environment for creating the portlets

themselves out of reusable components.

A parallel effort to JSR 168 is Web Services Remote Portlets (WSRP) [78]. WSRP

aims to support remote portlets using Web services standards. Portlets can run in the

remote portlet container that is called WSRP producer. WSRP consumer makes

requests on that remote portlet and gets response as HTML markup fragment. WSRP

consumer could be JSR 168, PHP or Microsoft .NET portlets. Consuming portals only

 36

get markup fragments from WSRP producer and present them in the portal page

through WSRP Consumer. Unlike JSR 168, WSRP consumer does not render HTML

markups.

3.6 Grid account management

Portals in general manage user accounts in implementation specific and usually non-

portable ways. But Grid portal user management requires handling standard Grid users

with their credentials. Credential mapping with user identities are always issue with

Grid portals. There are various solutions are studied by Grid community.

Point-solution attempts to Grid authentication and authorization problem are

available such as Grid Account Management Architecture (GAMA) [79] for Grid

account management and Portal-Based User Registration Service (PURSe) [80] for

Portal user management.

Grid portlets mentioned so far assumes portal users already have Grid accounts

available. They only issue proxies to existing Grid accounts. However, there are portal

and Grid account management portlets handle Grid account creation and management.

GAMA and PURSe are well known Grid and portal account management portlets in

open Grid community. Both systems have pros and cons in terms of their designs and

underlying technologies. Also portability of servers and user interfaces are general

aspects to be considered. The comparison of those account systems are shown on the

Table 3.1.

 37

Table 3.1 Comparison of GAMA and PURSe

Criteria PURSe GAMA

Server

SimpleCA has to be on

PURSe server.

Same with GAMA

Communication

Non-secure server

communication

Secure server communication

User interface Standard JSR 168 portlets

Portlets tightly integrated to

Gridsphere authentication

module

Access

PURSe server only accessible

by local JSP pages

GAMA server provides Web

service access

3.7 Grid authorization infrastructures

GridShib [81, 82] is focused on attribute based authorization for Grids. It is

combination of Shibboleth [83, 84] and Globus toolkit to enable various administrative

domains for federation. Identity of users is carried by X.509 credentials and access to

certain resources is determined by identity providers. Service providers always get

permission to access the resources. They facilitated Security Assertion Markup

Language (SAML) [85] attribute assertion model within this architecture.

There exist external services providing single functionality like Central

Authentication Service CAS [86] for authentication or PERMIS [87] for authorization.

 38

Also those available services are not enough to enable a portal entirely service based. If

the portal services are available, but there is no portal services coordination available

for portals as Web or Grid services.

3.8 Web application frameworks

Web pages can be easily grouped into two categories, static and dynamic, when

describing their content. Static content does not change; it is always output the same

way ignoring any external variables. For example, HTML provides a means to serve

static content. HTML describes the way a document should be displayed in a browser

but provides no means to change that display. On the other hand, dynamic content can

be influenced by external variables often passed through the URL or HTTP Headers.

For example, Java Server Pages (JSP) provides a scripting engine that allows accessed

pages to output different HTML based on external variables. The client-server model

the Web uses only allows two points where dynamic content can be processed on the

client and/or the server. Due to limitations on the client side, complex operations are

left for server side executing. With standardizations from the World Wide Web

Consortium (W3C) [88] client side technologies like JavaScript should work similarly

among standard compliant browsers. Of course, many browsers do not conform to the

standards, leading to many complications. However, JavaScript provides a common

platform for dynamic content on client side and introduce many benefits over standard

server-side manipulations. Most Web sites and/or Web applications employ a

combination of client-side and server-side technologies to provide rich dynamic content

to its viewers.

 39

3.8.1 Java Server Faces (JSF)

JSF is an acronym for Java Server Faces, which is an extension of the well-known

and widely used Java Server Pages (JSP) [40, 89]. JSF provides an abstraction on top of

JSP to allow rapid development of Web interfaces. Fundamentally, JSF components are

collections of reusable JSP codes which are described by XML-like tags.

With standard JSF add-ons it has become easy to bridge JSF applications into portlet

applications. Such components include so-called "bridges" currently being developed

by Apache [90] that serve the purpose of adapting JSF applications to function as

individual portlets within standard containers. These bridges have worked to optimize

development time of the VLab portal.

3.8.2 Web Interfaces and JSF

JSF is a dynamic Web application framework that similar to other dynamic Web

application templates like Velocity, JSP and Spring. JSF provides dynamic contents

using Java Servlet [44] technology. Dynamic contents are generated based on request

and response paradigm. Unlike static HTML pages Web application frameworks allow

interaction with users. The server pages take requests, process them and respond to the

user through a Web interface.

JSF applies MVC software design pattern [31] that decouples data, controller and

user interface. The data corresponds to model in JSF terminology is called backing

beans. The controller corresponds to JSF servlet that manages user requests. Finally,

the view corresponds to Web interfaces of JSF. This architecture separates the data

access and user interaction. Also MVC allow reusing backing beans within different

 40

applications without rewriting them.

JSF framework provides a component model that supported by user interface (UI)

widgets in XML format to implement view pages. In contrast, JSP usually mixes and

matches java code and html markups in the view pages. Rather JSF completely

separates view pages and beans by using JSF core tags and html tags. Such tags are

<f:form/>, <h:commandButton> etc. These tag instances binds attributes to backend

beans that defined on the configuration file of the application called faces-config.xml.

Thus, we can say that JSF uses Model2 (is a variation of MVC) pattern better than JSP.

Model and View logics completely separated; Model is provided by using Java Beans.

JSF Core tags and HTML tags enable developers to inject bean methods by using

attributes.

3.8.3 JSF Portlets

JSF portlets are built on top of the standard portlet API (JSR 168) so that allowing

them to be deployed within various portal frameworks. Java portlet development

generally requires implementing portlet API within the Web application. But there is a

tool called JSF portlet bridge that makes portlet programming easier for developers. As

a result, developers are not required to construct their portlets using the portlet API

directly.

3.8.4 JSF portlet bridge

JSF portlet bridge injects Java beans with portlet API so that there will be no portlet

programming phase. JSF portal bridge [90] provides a servlet to deploy JSF

applications as portlet. This bridge consumes portlet API so that deploying any stand-

 41

alone JSF application as portlet. JSF bridge supports MyFaces [91] reference

implementation of JSF which may not support different reference implementations such

Sun reference implementation.

42

Chapter 4

Applications

4.1 Introduction

In this chapter, we discuss several different science gateway initiatives with

scenarios to build a Grid portal. A science gateway building process starts with

following demands including portability and accessibility. As matter of fact, this

transition process is burdening in the following aspects. First, the science gateways

must design efficient interfaces to attract users from different backgrounds like core

scientists to elementary school students. Second, the gateways need to advertise their

backend services and to make service interfaces available for exploration. When they

are exposing all the services and visual interfaces, they also need to keep those services

and its data secure. In this case, science communities need to enforce policies for user

authentication and access control rights of the users. Our Grid tag libraries present

solutions for these issues.

43

The “Grid tag libraries” has been used in real applications like The Virtual

Laboratory for Earth and Planetary Materials (VLab) [15], Common Instrument

Middleware Architecture (CIMA) [92], and Indiana University Big Red portal [93]. We

summarize the efforts to build science gateways on the following use cases. We also

evaluate and discuss repeated problems and their solutions sticking with these practices.

4.2 VLAB: Virtual Laboratory for Earth and Planetary

Materials Portal

The VLab is a National Science Foundation-funded interdisciplinary research

collaboration whose primary objective is to investigate planetary materials at extreme

conditions based on computational techniques to better understand the processes that

create earth-like and other planetary objects. Such calculations typically involve

hundreds or thousands of computer runs. These runs occur in stages, with complex

interactions. They are often managed by several researchers. To address challenges in

collaborative and distributed computing, VLab brings together a team that includes

researchers in computational material science, geophysics, scientific visualization, Grid

computing, and information technology. Additional information on VLab is available

from [94].

Some of the many problems that VLab must address include the ability to create

input files through portals, submit jobs, store and retrieve the job input and output data

on demand, analyze and visualize the data, and store the data. These tasks must be

possible in a distributed environment and the flow of information must be accessible to

multiple collaborating researchers, although they might not be co-located. An

44

additional constraint on our system is that it must be robust, i.e., fault tolerant. When

working in a complex multi-user environment, it is inevitable that some components

will fail. However, these failures should not affect the work of an individual researcher.

Thus, we have chosen to connect the users of the systems (referred to as clients) and the

various tasks requested by the users (storage, visualization, analysis, job submission,

etc.) as services using NaradaBrokering [95], a middleware system that builds in many

of the required features.

In its initial phase, VLab follows a well-established pattern for building Grids:

application codes on remote machines are accessed securely through Grid services

through a browser portal. This follows the common three-tiered architecture. A user

interacts with a portal server through a Web browser. The portal server in turn

connects to remote Grid services that manage resources on a backend system that

provides the computing power for running the codes. The longer term research goal

however is to go beyond these traditional approaches. The distinguishing feature of our

research is the use of the publish/subscribe paradigm, which completely decouples the

clients from the services. Users have no knowledge of the resources allocated to their

requests, although they will have the capability to monitor task progress.

The VLab science gateway is based around the JSR 168 portlet model, and the initial

set of VLab portlets are described in detail in [15]. We began by developing Grid

portlets using the OGCE [27] software. In this model, each portlet application was

responsible for an individual task. For example, one portlet is used for submitting jobs

to PWSCF resources, another one is for GridFtp file operation, and a third is to get Grid

credentials from MyProxy [59] repository. This traditional approach is not useful for

45

the case of VLab. Instead, we need to collect all capabilities within a single portlet

application and to handle complicated PWSCF-based job executions and file transfers

in a sequence; that is, we must define dependencies between atomic job tasks.

Consequently, we have determined that we can represent job dependencies using

DAGs.

To implement these graphs, we chose the Java CoG abstraction [62] interfaces for

DAG executions in Grid. These provide a convenient Java programming interface that

can be easily integrated into Java portlets. However, we identified the need to provide

a higher-level development environment that encapsulates common tasks needed to

assemble a DAG in a portlet. Our approach is to design XML-based tag libraries for

expressing DAGs and to embed them in the Web pages. For that reason, we found the

JSF application framework to be appropriate. JSF is a component-based Web

framework that can be extended to add new components, such as our DAG XML tags.

As we discuss in this paper, we have implemented and have used initial prototype of

Grid tags within JSF. In case of VLab portal, we have learned that we need a more

comprehensive workflow engine to support loops, parallel jobs and conditional

branches.

Figure 4.1 shows the flow control of end user and portal resource interactions. End

users login to VLab portal securely and then store their Grid credentials to access Grid

services. While these processes are initiated by end users, all of the events are

persistently stored on Metadata server.

46

Figure 4.1 VLab portal serves to the end users by utilizing remote resources.

47

4.3 QuakeSim Portal

The QuakeSim portal is a problem solving environment to develop a solid Earth

science framework for modeling and understanding earthquake and tectonic processes.

The multi-scale nature of earthquakes requires integrating many data types and models

to fully simulate and understand the earthquake process. The QuakeSim gateway

includes portlets and services for accessing real time and archival data. The data

sources (Global Positioning System data, earthquake fault models) can be integrated

with computational applications for event detection and seismic deformation

calculations. These latter include finite element methods (GeoFEST [50]) that can be

computationally intensive and best run on parallelized platforms. In this study, we aim

to utilize TeraGrid [4]resources to solve computational problems of QuakeSim project

[96].

The QuakeSim portal has served the community since 2002 and is currently

undergoing several major revisions. In terms of using the portal frameworks, it initially

used the Jetspeed framework. It has subsequently been updated to use the standard

compliant, second generation portal framework GridSphere, which is compatible with

JSR 168 portlet specification. In its current form, the QuakeSim portal uses portlets

developed with the JSF Web application development framework. JSF is component

and tag based, and allows extensions. QuakeSim portlets are typically designed as

clients to remote Web services that constitute the QuakeSim middleware. These portlets

aggregate user information and data through JSF interfaces and invoke the actions

matching the Web services. QuakeSim services use Apache Ant [97] based services to

48

manage jobs and to build multiple steps of jobs that depend each other (i.e., to handle

simple workflows).

QuakeSim’s computational services are suitable for many of its applications, but it

must be extended to support more extensive computations for parallel applications.

Grid services of TeraGrid (e.g., Globus, Condor) provide this capability, so we need a

way to modify existing JSF-based portlets to work with these services. To simplify this

transition and to provide test cases for our GTLAB framework, we decided to combine

the two efforts.

We describe the application of GTLAB to QuakeSim as a case study. In this case

backend applications run on TeraGrid and we access these legacy applications with

GRAM, GridFtp, MyProxy services. We will show the integration and implementation

of Disloc and Simplex portlets with GTLAB. We also evaluate development time and

runtime performance results based on the tests that we conducted on different

geographical locations.

4.3.1 QuakeSim Gateway Architecture

QuakeSim portal architecture was previously designed for Web services invocations

in the middleware. These portlets aggregate user information and data through JSF

interfaces and the actions invoke matching Web services methods. QuakeSim services

utilize Apache Ant-based services for managing executable invocations, interacting

with the operating system, and controlling simple workflows. Ant build scripts serve as

templates for defining the operations of a particular application service. These server-

side Ant build scripts can be converted into portlet-side GTLAB XML tags.

49

Instead of altering QuakeSim service interfaces synchronizing with Grid services,

we remove the Web services layer. Therefore we use Grid services to invoke remote

applications, to make file transfers and to provide security. However, we also need to

allow implementing workflows within the scope of QuakeSim scripts. In other words,

we are able to translate Ant scripts to series of Grid service invocations that are

represented as graphs. This new approach has advantages to the previous architecture.

First, there is no need to alter service interfaces when the Ant scripts change. Second, in

the previous system, service clients cannot access the service layer to change scripts.

Therefore the clients have to request required changes that involve additional

management efforts as well.

Enabling QuakeSim portlets such as the Disloc interface to work with GTLAB

requires a few changes on the portlet pages. First of all we preserve all JSF pages that

collect information from users such as input forms and parameters. Next, we replace

the JSF form page that invokes QuakeSim Web services with Grid tags. Therefore the

embedded Grid tags that are invisible to the end users will call Grid services by using

Grid beans. As a result of these simple changes we gain from development time.

50

Figure 4.2 QuakeSim portal architecture with Grid services invocations of TeraGrid nodes.

As shown in the Figure 4.2, QuakeSim architecture utilizes GTLAB to access

TeraGrid nodes. We customize portlet pages to connect which TeraGrid nodes

beforehand. Therefore end users would not worry about TeraGrid availability. It is also

possible to involve the end users in the node selection stage. In which case, users have

to be knowledgeable about the nodes. In our design, users get their MyProxy

credentials before using any other Grid service. Then they can use one of the services

51

such as GRAM for invoking applications or GridFtp to transfer files from one server to

another.

4.3.2 QuakeSim Portlets

QuakeSim portal previously built and production with different technologies. In this

case study, we rebuild QuakeSim portal with Grid portlets by integrating GTLAB.

Therefore, we choose GridSphere portal framework to build QuakeSim portal. In the

building process we provide portlets for QuakeSim applications including Disloc and

Simplex.

<o:multitask id="multi" persistent="true"

taskname="#{resource.taskname}">

<o:myproxy id="mypr" hostname="gf1" lifetime="2"

password="manacar" port="7512" username="manacar"/>

<o:jobsubmit id="make" arguments="/home/manacar/disloc-

work" executable="/bin/mkdir"

hostname="gf1.ucs.indiana.edu" provider="GT2"

stdout="/home/manacar/tmp/out-make"/>

<o:jobsubmit id="disloc"

arguments="/home/gateway/GEMCodes/Disloc/input.txt

/home/manacar/disloc-work/disloc.out"

executable="/home/gateway/GEMCodes/Disloc/disloc"

hostname="gf1.ucs.indiana.edu" provider="GT2"

stdout="/home/manacar/disloc-work/out-disloc"/>

<o:dependency id="dep" dependsOn="make" task="disloc"/>

</o:multitask>

Figure 4.3 Disloc portlet page contains multi-staged jobs with DAG representation

4.3.2.1 Disloc Portlets

Disloc models multiple dipping dislocations (faults) in an elastic half-space. In the

view of portlet development, Disloc is an application that we need to run by providing

parameters and input files. Disloc run on TeraGrid and the users either can by using

52

command-line tools or shell scripts. But portal users can only access by using Grid

services to access TeraGrid in a secure way.

GTLAB provides a client layer on top of Grid services that is bridge to the portal

users. In other words, the portal users can access Disloc transparently through portal

user interfaces (i.e., Web forms). Not only using an application is possible, but also a

DAG could run the multiple steps of Disloc such as in Figure 4.3 making a directory on

the file system to save output file, then running Disloc application that depends on the

first task.

4.3.2.2 Simplex Portlets

Simplex is an inversion code based on Disloc. Similar to Disloc, Simplex

applications are run by DAGs that describe order of the tasks and their dependencies.

Then JSF pages collect parameters and information about the task to submit it to

TeraGrid.

4.4 CIMA: Common Instrument Middleware Architecture

Portal

One of the key issues in developing shared instrument systems is how to create an

open and flexible approach to user interfaces for access to instruments and the data

streams coming from them. In related work [98] we have described how portals can be

used to organize access to instruments through the Common Instrument Middleware

Architecture (CIMA) [99, 100] and how individual portlets can provide specialized,

53

role and task specific functionality as users, technicians and system administrators

interact in the generation, analysis and management of data from shared instrument

resources. In this paper we will focus on the approach taken to develop portlets for

managing crystallographic data in a group of cooperating laboratories.

X-ray crystallography is an analytic technique to help scientists understand and

determine the precise molecular structure of a crystalline substance. However the

instruments (called X-ray diffractometers [101]) required to perform these types of

studies are quite expensive and require a highly trained operator. The relevant data

from a crystallography experiment contains a series of diffraction images usually

captured by a CCD detector, and a number of environmental variables including crystal

temperature, crystal alignment image, CCD cooling status, and the temperature and

relative humidity of the lab.

In some cases, due to the nature of some crystalline materials such as proteins or

microcrystalline compounds, the successful structure determination of these

compounds require the use of high brilliance radiation sources available at national

synchrotron facilities. Gaining access to beamlines at these national synchrotron

facilities to collect data is not straight forward. Travel to these remote facilities is costly

and time consuming, and once there, the facilities must be used in an intensive manner.

By developing methodologies to remotely monitor and access instruments and their

data we can provide the remote users with a “same as being there” experience with

additional flexibility in scheduling around problem samples and equipment failures.

Additionally on-site users and technicians can share data coming from the beamline’s

instruments with remotely located colleagues to discuss the quality of a diffraction

54

pattern. This remote consultation capability can facilitate decision making such as

continuing with a questionable sample or abandoning it and starting a new one.

Effective shared access to instruments ensures a more efficient use of the beam time,

potentially improving throughput of the beamline as a whole. This paper will focus on

the implementation details of the CIMA crystallography portal and the mapping of end-

user functional requirements to portlets.

Grid tags are also being developed for use in CIMA crystallography portal. CIMA

provides access to X-Ray crystallography, instrument and sensor data. Sample data

includes CCD images of crystals as well as laboratory conditions such as temperature

and humidity. The CCD images may also be post-processed. One of the post-

processing applications used is SAINT [102], used to integrate CCD image frames, sort

reflection lists, scale, filter, and merge reflections. In this case, crystallographers launch

a SAINT application using multitasks to initiate an image analysis. This process results

in image files that are being downloaded to a portal server and are made available for

users.

4.4.1 Requirements

For the current work, a subset of requirements relating to user and administrative

interaction with data was chosen. These include the following:

� Remote users and in-lab crystallographers must be able to monitor an experiment in

progress, including viewing current and previously collected CCD frames and

associated relevant environmental and technical parameters;

55

� All raw data is owned by the lab which performed the experiment and collected the

data. In addition to the lab, represented by one or more lab administrators,

individual users can view (but not modify or delete) their samples;

� Lab administrators must be able to control sample ownership and visibility;

� Because the notion of when an experiment ends is not clearly defined (e.g.

experiments may be truncated after the fact or additional frames may be gathered

based on evaluations made during a run), lab administrators should be able to set

the end time of an experiment;

� Lab administrators must be able to add and remove users to an access control list

for a sample;

� Users must be able to view their samples, including all files and sensor readings

related to the experiment;

� Some sample data may be provided to the general public for educational or public

science awareness purposes;

� Users must be able to view the current status of the lab as a whole;

� Individual functions that are of general utility should be implemented in a reusable,

pluggable, standards-based manner as portlets that can be added or removed by

administrators or end-users as appropriate;

� The portlets must interact with a lab’s data manager software via Web services

calls;

� Users and groups will be managed by the portals container and access to all

functions of the portal will be provided by a single sign-on through the portal.

56

A prototype implementation of the crystallography portal was completed using

Jetspeed1 and CGI scripts. Although in the right direction, this implementation did not

meet our modularization requirement and so with the ramp-up of the NSF middleware

project and the availability of support from the OGCE group, we migrated to

GridSphere and JSF-based portlet clients to CIMA services as a fully JSR 168

compliant portal container. This assures a degree of survivability and lateral flexibility

to move the science process specific functionality to other containers if the need arises.

The requirements outlined above led us to develop the following portlets:

� A lab overview portlet that provides the current status of a facility and its

instruments;

� An administrative Admin portlet to support management of sample ownership

and other parameters related to individual experiments;

� A PublicSample portlet that provides sample data to all portal users and the

general public;

� A UserSample portlet that shows a logged-in user their samples and other

samples on whose access control lists they appear.

PublicSample and UserSample portlets also allow users to scan through all data

objects in an experiment. Per design choice some functions of the portlets are made

available as pop-up windows. These portlets provide all of the functionality listed in the

requirements above. Extensions to the portal’s basic group authorization mechanism

provide an access control list associated with each data collection. Scientists can view

and modify sample data from their X-ray diffraction crystallography experiments based

57

on their roles in this project and can add users to the access control lists of their data

sets. Nothing more than a web browser is needed to interact with the system.

4.5 Big Red Portal

Big Red is a major new TeraGrid resource and one of the most powerful computers

in the world. As with all TeraGrid resources, it runs the Coordinated TeraGrid

Software and Services, which includes Globus services. One of Big Red’s initial

applications is Mutiple EM for Motif Elicitation (MEME) [103]. MEME is used to

discover common motifs in groups of DNA or protein sequences. Due to its

computational complexity, MEME should be executed in a rich resource environment

such as Big Red. However, to execute MEME on Big Red, a user must not only be

familiar with the application itself: he or she must also understand various network

tools such as FTP for uploading and downloading input and output files, and he or she

must understand Big Red’s LoadLeveler and MOAB-based scheduling and queuing

system in order to submit, monitor and control jobs. This kind of inconvenience can be

easily overcome by making a specific portlet that allows a user to execute the MEME

application by using a science portal based on the OGCE [27]. In addition to MEME

execution, we can add file management and job control functionality into the portlet by

using Java CoG kit to utilize Big Red’s Grid infrastructure.

Portlets provide a common component for building portals out of reusable parts. For

example, as mentioned previously, the OGCE portal has portlets for job submission,

credential management, and file management that can be plugged into any standard

compliant container. Often, however, as in the case of the MEME portlet described

58

above, portlets are not quite fine-grained enough components. We would like to build

portlets that combine several Grid operations in the same portlet. Our work on GTLAB

provides a set of JSF tag libraries and backing JavaBeans (called Grid beans) that

attempt to solve this problem. A full discussion of JSF is out of scope here, but briefly,

JSF generates HTML from a set of XML tags. HTML form actions are associated with

so-called backing JavaBeans, which in turn may act as Web service clients or connect

to databases. Developers can extend these libraries to provide their own XML tags.

The goal of GTLAB is to simplify the process of Grid portlet development by

encapsulating common Grid operations as XML tags that can be embedded in portlet

pages, enabling rapid development. GTLAB capabilities include credential

management, remote file operations, remote job executions, and file transfers.

The JSF Web application framework provides us with extensible component

architecture. Each XML tag is associated with a backing Grid bean that implements the

actual Grid clients, which we build with the Java CoG kit. We use JSF’s built-in

functionality to pass attribute values from the XML tags to the backing beans. Grid

beans are associated with Grid tags and their action methods are fired by our 'submit'

tag. Tracking the jobs and monitoring is also part of the GTLAB framework.

4.5.1 Integrating GTLAB with Big Red Portlets

Typically a Grid portlet stages various related tasks in response to a user-generated

event. These are usually the nodes of a DAG, which our Grid tags are designed to

support. The DAG, or composite task, is called multitask in GTLAB. Currently,

multitasks only allow dependent task units and prevent parallel tasks and cycles.

59

After building the sub-tasks, multitask and their dependencies, GTLAB then registers

multitasks in the browser session. In addition, it registers their handler information

within the session to track their lifecycle. All of the objects are stored in hash tables

with a unique key. The job handler information can be stored persistently to a backend

storage system (i.e., a database) by setting persistent attribute of multitask.

The following scenario shows the building of multitask for MEME with dependent

multi-staged tasks. Assume a developer has been assigned the job of creating a portlet

to do the following basic tasks. First, Task A makes a working directory on Big Red.

Then, Task B transfers an input file from a remote host to the newly created directory.

Finally, Task C is responsible for submitting a command script on Big Red using the

input file. The following sections explain the scenario in detail through the use of Grid

tags. After the portlet is finished and deployed, users will then submit and monitor jobs

using the developer’s portlet. Users will not see the tag libraries and will interact with

standard HTML pages that get generated when the portlet is rendered.

4.6 Summary

We have summarized the Grid portal efforts of scientific communities including

VLab, CIMA and Big Red. These uses cases have shown that similar issues and

solutions are applicable to different community requirements. Our generic Grid tags

have been applied to these portlets by adjusting configuration and customization

principles for each case. Therefore we have saved development time for each portal.

60

Chapter 5

Architecture of Grid Tag Libraries

5.1 Introduction

We aim to provide a set of Grid tags in JSF that can be used to build Grid portlets.

We have described our tag libraries, called Grid Tags Libraries and Beans (GTLAB), in

[48] that provide common Grid capabilities such as proxy credential management, job

submission, file operation, and workflow by means of multi-staged tasks. Grid tags are

associated with Grid beans to access Grid services. Grid bean methods are bound to

tags with attributes. These can then be used to simplify the building of new Grid

portlets.

Figure 5.1 shows the general picture of science gateways and where we locate the

GTLAB within this big picture. In this architecture, Grid portlets are built using JSF

61

Grid tags. Grid tags and beans use local services on the portal server such as bean

repository, listener repository and MyProxy repository.

Figure 5.1 Big picture of Grid portlets using GTLAB libraries and JSF framework

62

5.2 Design

Grid portlet programming is a burdening process for application developers. GTLAB

provides several important features for application developers. First, it provides

modular components (tags and beans) to construct science gateway portlet pages.

Second, it represents Grid service clients using abstract XML tags. Therefore, portal

developers do not need to understand underlying details of Grid services. Finally, it

provides a component model for developing Grid portlets out of reusable parts.

 Figure 5.2 Grid tags are embedded into JSF view pages with visual HTML tags

63

The design of GTLAB requires three essential parts: 1) Grid tags and 2) Grid beans

3) Session management. These components are explained in greater detail in the

coming sections.

Figure 5.2 shows a JSF view page that builds a Grid job submission portlet page by

using Grid tags. The portlet page contains a Web form, input and output text fields and

submit button. JSF view pages are built and rendered by JSF container to construct

HTML pages. So JSF page is different than what you see in the browser’s resource

page. Basically XML based tags are built the view page. We’re using core, html and

Grid tags to build a Grid portlet page.

The Grid tag components on Figure 5.2 also bind Grid bean features to call

appropriate Grid service client. Grid beans are using underlying Globus, Condor and

Taverna [104] services by abstracting their client APIs to work with Grid beans.

Grid beans and listener information are managed by session manager. Session

manager basically keeps track of every submitted Web forms in the portlet page and

identifies them with unique ids within a user (e.g. browser) session.

Application developers only plug these tags into their portlet applications and add

required libraries to their Web applications to enable GTLAB. There are only simple

settings to customize GTLAB within the portlet application.

We have used the strategy of returning immediate results to the user such as passing

the control to the next page since Grid operations can take a long time to complete.

Thus, a user submits the job in one page and is not required to wait until the job

finishes. Instead, users are able to monitor their jobs in another page. To maintain this

scenario, either we need to keep callbacks for each job or to store listeners for each job

64

in the servlet HttpSession object. We have therefore used CBB that take care of each

request in the session. Then we stored bean instances and their listeners into tables

(Hashmap) among the session with taskname key. The taskname key is created by

putting the user-defined taskname (collected from Web form input) and the timestamp

together to provide a reasonable ID.

Figure 5.11 illustrates the user interaction with the Grid beans and tags are

illustrated. When user hits a submit button, CBB takes control. First, CBB constructs a

multitask with the components that defined by the Grid tags. CBB also responsible for

submitting the multitask and for managing the lifecycle with associated listeners. After

the submission is completed, control is passed to MonitorBean shown on the right.

MonitorBean interacts with the session to retrieve the information of submitted tasks.

5.3 Grid tags

Grid services are interfaced by Java CoG abstractions. These programming

interfaces have capabilities to generate proxy certificates, submit jobs, transfer files and

make file operations. They also provide composite task submissions and their handling.

JSF technology helps to build user interfaces based on an object-oriented component

approach. JSF tags are built from Java classes that can be extended using JSF

component model. New components derive from JSF base component classes. Each

component should define its attributes, which can bind values, methods or actions. A

full discussion explaining how to extend JSF components is beyond the scope of this

paper. We recommend [105] for a tutorial on this subject.

65

The main goal is to make Grid portlet development easier by encapsulating standard

Grid operations with JSF tags. These tags can be assembled to create composite tasks.

In traditional Web frameworks such as Velocity and JSP backing bean objects and

HTML tags are mixed within the server pages. Instead JSF eliminates this intervention

by proposing JSF tags that separate backing bean and server pages.

5.4 Grid tag schemas

JSF Grid tags are defined in the Java based tag libraries and supported by JSF

backing beans. JSTL tags are basically in the XML format. Tags and their attributes are

predefined within .tld files. We can define optional attributes besides required ones.

Also we can define tags in nested structure as in XML. Figure 5.3 shows the XML

schema of <o:multitask> that may <o:myproxy>, <o:filetransfer>, <o:jobsubmit>.

Table 5.1 shows the attributes of <o:multitask> tag with denoting which attributes

are required. Similarly, Table 5.2 shows the attributes of <o:myproxy> tag. Further

information about tag tables can be found at Appendix B.

Grid tag schema is extensible for new tags and attributes. For example, we have

added <o:scufl> and <o:condor> tags later to support Taverna workflows and Condor

Grid services. Similarly, we have added persistency feature to available services by

adding persistent attribute to all Grid tags.

66

Figure 5.3 Grid tags schema for job submission to GRAM server

5.5 Use case example

Typically a Grid portlet must do several related tasks in response to a user-generated

event. These may be thought of as simple workflows. These workflows can be

considered the nodes of a DAG, which are Grid tags are designed to support. The

DAG, or composite task, is called multitask in our approach. Multitasks only allow

dependent task units and prevent parallel tasks. Figure 5.4 shows a multitask with tasks

and their dependencies. In this example, Task A makes a directory. Task B transfers an

input file form a remote host to newly created directory, and Task C is responsible for

submitting a job on the remote computer. When Task C completes, Task D transfers

output file to another location. The following explains the scenario in detail through the

use of Grid tags.

67

This example demonstrates a composite Grid task with Grid tags. The JSF snippet

below (Figure 5.6) shows how a portlet developer would create a custom Grid portlet.

First, a myproxy tag generates a proxy credential form gf1.ucs.indiana.edu

MyProxy server. Second, using this credential, it makes a directory on the TeraGrid

resource cobalt.ncsa.teragrid.org. Third, it transfers an input file called

input_file from gf1.ucs.indiana.edu to cobalt.ncsa.teragrid.org.

Forth, it then executes a script called execute. When the execution is completed outputs

are written to the file named result. If an error occurs it is also written to the file named

error. Finally, result file is transferred back to gf1.ucs.indiana.edu.

Figure 5.4 A typical multistage Grid job involves four sub-tasks: moving an input file to a
particular execution host, submitting the job, and moving the output to a storage host.

68

The <%@taglib uri="http://www.ogce.org/gsf/task"

prefix="o"%> tag is used at the top of the page to define the custom tags called

with the “o” namespace. Application developers must define Grid operations in a Web

form. The <o:submit> tag is a submitting button for the composite task that is bound to

a JSF action method. The <o:multitask> defines composite task and <o:dependency>

defines their dependencies. The tasks <o:myproxy>, <o:fileoperation>, <o:filetransfer>

and <o:jobsubmit> are unit tasks for this composition. The dependency tags indicate

that taskA must complete successfully before taskB will run, taskB must complete

successfully before taskC can be run and taskC must complete successfully before

taskD could run. Complete XML schema specifications of Grid tags can be found at

[106]. Each Grid tag is associated with UI component and tag class that is explained in

great detail in the next section.

5.6 Design and Implementation of Grid tags

Grid tag libraries are built using JSF custom component development techniques. A

standard JSF tag requires at least two classes to be implemented: the ComponentTag

and IUComponent classes must be extended. Tag names and attributes have to be

defined in a tld file and this file is added to web.xml. Component names and classes are

defined in faces-config.xml. A full explanation of JSF custom tag development is

available from [105].

Custom component classes extend the UIComponentBase class and are normally

associated with HTML or other rendered widgets (input fields, buttons, etc.) in the user

interface. We have implemented several custom UI components, including UISubmit

69

and UIMultitask, as discussed here. Components can access a map (specifically, a

java.util.Hashmap) of attributes and child components. If the component is visual like

UISubmit (which we associate with the HTML <submit> button), it also implements

encoding and decoding methods to process HTML markup. If the component is non-

visual (i.e. does not need to be converted into HTML), it is associated with a null

renderer. UIMultitask class is a non-visual component. In addition, the JSF

ComponentTag class extension has to implement release(), setProperties(),

getComponentType(), and getRendererType() methods. The setProperties() method

binds attribute values and methods to the associated UIComponent.

In JSF, the tags and attributes are used to render displays and communicate attribute

values (see Figure 5.6). We encapsulate the actual logic of the page (associated with

user button clicks) in several beans that are called by the UISubmit’s action method.

Besides tag and component classes, there are core beans as following:

• ResourceBean: A general bean to collect property values used in JSF form

pages. By default it loads property values from a resources.properties file.

5.7 Handler tag manages monitoring of the jobs

Grid tags launch Grid operations. Keeping track of lifecycles and archiving are also

important aspects of Grid portlets. Thus, we define a <o:handler/> tag in Figure 5.5 that

provides capabilities allowing users to manage lifecycles manually such as canceling,

suspending, and resuming the jobs. The <o:handler> tag is visual and it is rendered as

HTML button. The session tables only persist until the servlet session expires or

terminates. So we need to have mechanism to persistently preserve them in a permanent

70

storage. The persistent attribute of the multitask tag switches archiving on and off (see

Figure 5.6). A context server [15] provides archival facilities that store bean values and

the status in a structured way.

<f:view>

 <h:form id="first" >

 <h:dataTable value="#{tasklist.tasks}" var="task">

 <h:column>

 <f:facet name="header">

 <h:outputText value="Handler" />

 </f:facet>

 <o:handler id=”delete” action="#{monitor.cancel}" >

 <f:param id="task" name="taskname" value="#{task}"/>

 </o:handler>

 </h:column>

 </h:dataTable>

 </h:form>

</f:view>

Figure 5.5 The handler tag is used with <h:dataTable> to create a table of tasks and enable
cancellation actions.

Figure 5.11 illustrates the user interaction with the Grid beans and tags are

illustrated. When user hits a submit button, CBB takes control. CBB first constructs a

multitask with the components defined by the Grid tags. CBB also submits the

multitask and manages its lifecycle with associated listeners. After the submission is

completed, control is passed to MonitorBean shown on the right. MonitorBean interacts

with the session to retrieve the information of submitted tasks.

71

Table 5.1 Attributes of multitask tag

Attribute name Required Description

id yes String: component id

taskname yes String: task name is for multitask

persistent no String: stores task information

handler no String: defines bean method to submit this

component

Table 5.2 Attributes of myproxy tag

Attribute name Required Description

id yes String: component id

hostname yes String: myproxy server name

port yes String: myproxy port number (default is 7512)

lifetime yes String: myproxy lifetime (default is 2 hours)

Username yes String: user name for stored credential

password yes String: password for stored credential

handler no String: defines bean method to submit this

component

72

5.8 Grid Beans

Grid tags and beans work together to perform Grid tasks. Grid tags provide the JSF

components for Grid applications, while Grid beans provide the business logic of Grid

applications. We have implemented Grid beans in a generic and standard way to

support underlying Grid technologies. We have also attempted to design our tag

libraries to support other Grid bean implementations. The Grid beans are generic tasks

that may be extended using other toolkits besides Globus. For example, the

JobSubmitBean for job submission uses Globus resources in our implementation.

Developers can create their own beans with other toolkits. For example, Condor can be

used for job submissions rather than Globus. However, this requires that Grid bean

method names should be standardized and required bean methods has to be provided.

For example, actions methods should be called submit in all beans. Parameter names

should also be consistent throughout the beans e.g., hostname, provider, username and

executable etc.

 73

<%@taglib uri="http://java.sun.com/jsf/core" prefix="f"%>

<%@taglib uri="http://java.sun.com/jsf/html" prefix="h"%>

<%@taglib uri="http://www.ogce.org/gsf/task" prefix="o"%>

<f:view>

 <h:form id=”myform” >

 <o:submit id=”test” action=”next_page” />

 <o:multitask id=”mytask” taskname=”test” persistent=”true” >

 <o:myproxy id=”proxy” hostname=”gf1.ucs.indiana.edu” port=”7512”

 lifetime=”2” username=”manacar” password=”******” />

 <o:fileoperation id=”taskA” command=”mkdir”

 hostname=”cobalt.ncsa.teragrid.org”

 path=”/home/manacar/tmp/” />

 <o:filetransfer id=”taskB”

from=”gridftp://gf1.ucs.indiana.edu:2811/home/manacar/input_file”

to=”gridftp://cobalt.ncsa.teragrid.org:2811/home/manacar/tmp/input_file” />

 <o:jobsubmit id=”taskC” hostname=”cobalt.ncsa.teragrid.org”

 provider=”GT4” executable=”/bin/execute”

 stdin=”tmp/input_file” stdout=”tmp/result”

 stderr=”tmp/error” />

 <o:filetransfer id=”taskD”

from=”gridftp://cobalt.ncsa.teragrid.org:2811/home/manacar/tmp/result”

to=” gridftp://gf1.ucs.indiana.edu:2811/home/manacar/result” />

 <o:dependency id=”dep1” task=”taskB” dependsOn=”taskA” />

 <o:dependency id=”dep2” task=”taskC” dependsOn=”taskB” />

74

 <o:dependency id=”dep2” task=”taskD” dependsOn=”taskC” />

 </o:multitask>

 </o:submit>

 </h:form>

</f:view>

Figure 5.6 Grid tag libraries are used to build a sample Grid portlet page.

• MyproxyBean: This bean generates user proxies and stores the Grid credential

in the session.

• JobSubmitBean: Executes GRAM job submissions.

• FileOperationBean: Performs common file and directory operations like rm,

mkdir, put, get

• FileTransferBean: Transfer files among GridFtp servers

• MultitaskBean: Creates composite tasks and execute them.

Note that these are independent of the JSF framework. The Grid tag libraries shown in

Figure 5.6 are built from these, as we describe in the next section.

5.9 Session Management

Portal systems work on Web browsers and maintain the browser features using

session cookies. Cookies provide communication in between the user and tomcat

server. HTTP protocol only allows one-way asynchronous communication. Cookie

basically gets a unique user id for each user session and keeps these IDs in the server

side to maintain lifecycle of the user interactions within request/response systems.

75

There several case we need to handle with portal users including: 1) Many user from

many different computers. 2) One user logs in from different computers 3) One user

opens up many browser pages from the same computer. 4) One user within the same

browser session makes many requests. Most of the cases listed above are handled by

Web server or Web container (e.g. Apache Tomcat). The last part is that we need to

handle in the system. Because there is no way for handling such cases in Web servers.

We have designed session management architecture to keep track of many requests and

their responses within a user session. It can also maintain information to failures and

history of the user.

Session manager basically keeps track of every submitted Web forms in the portlet

page and identifies them with unique ids within a user (e.g. browser) session. The

manager assigns an id for each request and keeps them in a bean repository. Also

session manager saves handler information within the listener repository.

5.10 Caching

Portals provide convenience to the people and reduce redundancy of tasks and gets

quicker responses to the typical requests. To end up with an elegant solution to quick

response times, caching is important aspect of GTLAB. On the client side of the Grid

services, in other words, portal server (e.g. comprehensive client application) provides

a caching mechanism. There are certain cases that caching is required including the

following: 1) Client cache would keep the latest input parameters of jobs and display

them when the submission page is accessed later on. 2) Getting job tracking

information is a time consuming process. To reduce response time for the user, GTLAB

76

internally keeps track of the jobs periodically. So it can show the tracking list on

demand from the cache. User sessions (e.g. browser sessions) do not take so long. So

caching makes sense for most of the cases.

In case of GTLAB caches, there is no shared session in between the users. Each user

manages its own session. The advantage of this limitation is that does not cause

inconsistency. These types of caches are considered as monotonic read [107]. As result,

we should not apply coherence detection policies.

5.11 Synchronous and asynchronous

Typical HTTP requests are synchronous. So all the events occurred in GTLAB are

considered as synchronous. However, backend job processing is not always

synchronous. In most of the cases, jobs go into a batch queue, and results pulled by the

client which is asynchronous. GTLAB jobs usually take longer time to finish than a

user session expires. As a result, portal server should catch responses from the backend

and store them in the storage. In this case portal server runs an intermediary module to

manage lifecycles of the jobs beyond the user sessions. Alternatively, job handlers to

submitted jobs are stored for future references. Whenever the jobs are done the handler

is used to retrieve regarding results and status information.

5.12 Architecture

ResourceBean, MonitorBean and ComponentBuilderBean are managed by JSF’s

session handling mechanisms and are declared in the faces-config.xml file. CBB is not

normally used directly by developers in their JSF pages. They instead interact with this

77

object through Tag libraries. Application developers can directly use ResourceBean and

MonitorBean to build up pages.

Parse Grid tags

Create Grid beans

Create multitask

Register bean table

Register listener table

Submit multitask

Component Builder BeanUser form page

Submit

n times

CoG layer

Myproxy GRAM GridFTP

Register

t1

t2

tn

h1

h2

hn

Bean Table Listener Table

Stored in session memory

Figure 5.7 Shows architecture of ComponentBuilderBean and its components

Figure 5.7 shows the architecture of components. In this diagram, bean and listener

tables are in the HttpSession and tables store bean and listener objects in a Hashmap.

CBB handles user requests on the server side using Grid bean property values provided

by ResourceBean. The actions are fired off by the Grid submit tag that is bound to the

submit method of CBB. Its action listener catches the event and calls required methods

to parse custom components. FactoryBean then constructs corresponding sub-tasks.

Next, CBB constructs a taskgraph using MultitaskBean. CBB adds child components

which are Grid beans and their dependencies. It then submits the taskgraph and passes

the control to the submit button’s action attribute. The JSF engine handles the value of

the action attribute, while a navigation rule points to the destination page based on the

attribute value.

78

The above classes (particularly the Factory Bean) are designed to accommodate a

common use case in Grid portlets that is not handled well by JSF: we need to construct

many beans for encapsulating many submissions by a single user in a single session.

JSF manages the sessions (lifecycle) of beans but these are statically configured in

faces-config.xml, so we need an approach to create and manage lots of Grid beans. We

must also address a disparity of time scales: JSF event processing may take

milliseconds, while the corresponding backend action may take much longer. Our

solutions are described in the following section.

5.13 Component Parser

Component parsing based on Faces context components. Component parser

processes JSF components to extract GTLAB widgets. After that attributes of each Grid

tag are extracted. In the final stage, if the attribute values are not static values then

value binding is performed.

Figure 5.8 Parsing the JSF component tree that only shows tags widget

79

Figure 5.8 shows a component tree with the root node is multitask A. Multitask A

contains three Grid components file operation (fop), job submission (js) and file

transfer (fs) respectively. The last two components define dependency among the Grid

components.

Figure 5.9 Each component has its own set of attributes and attributes can be given as
constant or reference value

Figure 5.9 shows the hash tables of components and the hash tables of attributes

within JSF session scope. In this figure, each component listed on the component table

has an attribute table. While the component parser parsing the GTLAB tags,

components and attribute values are assigned to a tree representation.

Figure 5.10 Properties of a component stored in a JSF session during component parsing

80

Figure 5.10 shows the component properties that stored into hash tables. These

properties contains JSF component ID that is specific to JSF session management.

Component name is given by the developers to label each component. Attribute and

value binding references are stored in the component table as well.

5.14 Monitoring and management of jobs

Monitoring pages are responsible for keeping track of submitted tasks. Grid tasks

usually take time to process. Consequently, managing the persistence of the tasks and

archiving the results and input parameters are important for portal users. CBB provides

a mechanism to store task handlers into persistent storage in the user’s workspace.

Monitoring pages collect status information and task parameters from user’s workspace

with a key named taskname. In general, CBB provides status information and updates

archival storage accordingly. This has an important advantage that caches the

monitoring information in the session. On the other hand, CBB stores URL handlers of

submitted jobs which are provided by the Globus API. A URL handler is important for

persistence. In case the user logs out or a session expires, the handler can always be

accessible from archive and the user can retrieve status information with it.

Monitoring pages check the status of submitted tasks. We model task with Java

Bean class called JobData. Each submitted task has an associated JobData object. The

collection of JobData objects is stored in a java.util.List. Job status information is

displayed in HTML using the JSF HtmlDataTable component (which JSF converts to

an HTML <table>). Properties stored in the JobData object include taskname, input

parameters, output and error file locations, start time, finish time and status.

81

Portal users can manage the tasks that resume, cancel or resubmit jobs. The

MonitorBean supports these capabilities for active (running) tasks. The MonitorBean

allows users to manage their job archive: failed tasks may be deleted or renamed for

resubmission. Successful task results and output files can be downloaded or transferred

to permanent storages.

Figure 5.11 Sequence diagram for Grid tags and beans including user interaction.

82

5.15 Metadata management

Metadata management has been investigated by projects such as the Storage

Resource Broker [108] and Scientific Annotation Middleware [109]. For VLab, we are

evaluating the use WS-Context [110], a lightweight, Web Services based metadata

system. A “context” is simply a URI-named collection of XML fragments. To support

linked contexts in GTLAB, we used extended WS-Context implementation to support

parent-child relationships between contexts [111]. Context servers are normally used as

lightweight metadata storage locations that can be accessed by multiple collaborating

web services.

The data collected from the user interface input form is written into a unique context

associated with that user session. This data is stored persistently using a MySQL

database, although this implementation detail is not relevant to the PWSCF portlet

developer. Each user has a base context, which is subdivided into one child context per

user session. These child contexts are used to store specific input parameter values for

that particular job submission. These sessions may then later be browsed and the data

recovered for subsequent job submission.

Although we may store and recover values one at a time from the context storage,

we are developing a way to more easily store and recover entire pages using Java Bean

serialization. We are developing XML serialization of the entire input page using

software from the Castor Project (www.castor.org). This will enable the serialization

of entire page contents, storing them into the WS-Context server, and then un-

serializing them to reconstruct the input parameter values.

83

Following WS-Context specifications, a Java object may be considered to be a

“context”, i.e., metadata associated with a session. When storing a context, we first

create a session in WS-Context store. Here, a session can be considered an information

holder; in other words, it is a directory where contexts with similar properties are

stored. Each session directory may have associated metadata, called “session directory

metadata.” Session directory metadata describes the child and parent nodes of a session.

This enables the system to track the associations between sessions. One can create a

hierarchical session tree where each branch can be used as an information holder for

contexts with similar characteristics. These contexts are labeled with URIs, which give

structured names to tree elements. For example, “vlab://users/jdoe/session1” may refer

to a session directory where contexts are stored and linked to a session name “session1”

and user name “jdoe”. Upon receiving the system response to a request for session

creation, the user can store the context associated to the unique session identifier

assigned by the WS-Context Store. This enables the WS-Context store to be queried

for contexts associated to a session under consideration. Our WS-Context

implementation normally allows for the specification of the lifetime of the metadata.

For VLab, each context is stored with unlimited lifetime as the WS-Context Store is

being used as an archival data store.

5.16 Collecting User Input Values and Handling Navigation

Our Grid tags are primarily non-visual components in a JSF page that are associated

with submit button actions. However, many of the tag attributes (e.g., which host to

use or input file to copy) must come from user input. This is done using Web forms.

84

Thus, Grid tags are embedded into a complete JSF page that contains a Web form that

has visual input and output text elements. There are only two exceptions: the

<o:submit> and <o:handler> tags are bound to a button that triggers series of actions

behind the scenes. Since Grid tags are unable to get inputs from the page, we need a

mediator to communicate these user-provided inputs to our Grid tags.

ResourceBean provides a simple way to represent common property values across

the application. We define common property values for Grid beans such as hostname,

provider, username etc. Each of these values corresponds to Grid tag attributes. Thus,

ResourceBean gets its value from the Web form dynamically and assign it to the Grid

tag attribute. ResourceBean enables users to enter dynamic values in the form and

submit their tasks with these values.

JSF page navigation is somewhat complicated compared to JSP page navigation, as

the JSF pages’ links and HTML form actions do not directly point to the next page to

load. Instead, JSF navigation rules for a particular Web application are configured in

the faces-config.xml file. Similar to standard JSF, advanced navigation controls the

page with constant values as well. The <o:submit> button provides action attribute (see

Figure 5.6) that assign a constant value for the destination page. Action methods and

action listener methods of the <o:submit> tag is hidden from the application developers

to reduce the complexity. But the navigation is left to application developers. The

advantage of this architecture is that users need not wait on the submit page until it is

completed. Instead they are directed to the destination page immediately (i.e.,

asynchronously).

85

5.17 Experiments

GTLAB is aimed to decrease Grid portal development time, at the time GTLAB

should not introduce unacceptable request processing overhead. The overhead is the

cost of processing of job requests within GTLAB framework. As shown in Figure 5.13,

end user requests are caught by portal server and GTLAB parses and extracts Grid tags

from portlet pages. In the next step, Execution steps are created by calling appropriate

Grid bean instances. By this time, job parameters and bean handlers are stored in the

hash tables for future references such as tracking the progress of the jobs. Finally, the

request is passed to the Grid service by invoking corresponding services like GRAM or

GridFtp.

We performed run-time tests to analyse GTLAB architecture by determining

overhead in the overall processing time of the requests. Our testing baseline and testing

framework is explained in great detail in the next section.

Portal Server

Grid Services

Client Browser

Tform

User

Tportal

Request/

Response

Request/

Response

Figure 5.12 JSF applications uses Web forms through lightweight Web browsers. HTTP
requests goes to the Web application on Tomcat and responses get back to the browser.

86

We expect that the most time consuming task of portlet development is creating Grid

bean instances. While we integrate GTLAB to construct portlet pages, we observed that

it reduces development time. We experienced these during the course of our use case

Grid portals including QuakeSim, and VLab.

GTLAB testing server runs on Tomcat server and these tests aim to measure

turnaround time on the server and client sides. Clients make extensive number of

requests to show performance and thresholds. We have measured elapsed time for

starting and ending of requests. There are two testing case: i) Response time for

requests are initiated from browser client by submitting Web forms. ii) Response time

for requests first comes to the tomcat server and responses leaves the tomcat server.

5.17.1 Testing Setup

GTLAB testing server runs on GridSphere portal framework and these tests aim to

measure response time between the portal server and end user sides. End users make

extensive numbers of requests to measure the timings. The elapsed time is measured at

each request and response in Figure 5.12. Our testing case is for response time in

between end user and Grid services denoted by Tform.

The end user requests are launched by using HttpClient programming interfaces

[112]. HttpClient provides an interface to feed Web form parameters and submit

actions. We have embedded simple DAG into portal submission pages to execute

scripts at GRAM service. When the DAG runs, it first obtains the Myproxy credential

from Myproxy repository and then submits shell script commands. In order to get

elapsed time accurately, we have taken “submitted” message that is the initial

acknowledgement from the Grid service into account. Since GRAM jobs are queued at

87

service location, departure time cannot be determined by waiting for “completed”

message.

Portal Server

Parse

Grid

tags

Create

Execution

steps

Store

handlers
Submit

Store status

User Request (1) 2 3 4 5

Response (6)Response to user (7)

Trequest Tsubmit

Figure 5.13 Request processing stages and their timing in portal server

Figure 5.13 shows detailed steps that are magnifying the processing stages at the

portal server. At the first stage, user requests (1) are parsed as using JSF component

model. The Grid tag components are extracted from portlet pages and then the graph

structure is constructed by keeping the dependencies among Grid operations. Next,

Grid operations on the graph are assigned to Grid beans that are supported by Java CoG

[66] libraries at (2). While Grid beans are created, the handlers of the tasks are stored in

hash tables at (3). Finally, the submit action is called at (4) that invokes a Grid service.

The acknowledgements and status changes are stored by handlers of the jobs. Grid

services send response messages that may be a “submitted”, which is for successful job

88

submission or “failed”, which is for failure of job submission. At the final stage, the

response message is directed to the end user through the Web browser (7).

5.18 Analysis of GTLAB architecture

Test scenarios are conducted to measure the overhead on TeraGrid nodes including IU,

NCSA and TACC. The test results have shown that GTLAB framework has acceptable

overhead as indicated on Table 5.3. The average overhead is about 150 millisecond.

Figure 5.14 shows the results of average response time. The heights of the bars indicate

response time, Tform . In this test, we wanted to give an idea of response time measures.

Therefore, the average response time is always less than 1 second which is an acceptable time

for Web applications. Since Tform includes network transfer time between users, portal server

and Grid services, in addition to processing time on the portal and Grid service.

Figure 5.15 shows the average network latency, when users access to the portal server.

Comparing with the average processing time on the portal server, the network latency is an

acceptable amount of time. Another interesting aspect of this measurement is about the end user

locations. Locating the users among different cities does not cause a significant delay on user

requests.

Table 5.3 Timings of GTLAB processing stages on the portal server

 GTLAB

Processing

JSF Processing Handler storing Submitting

Time

(msec)

2 153 1 410

89

Figure 5.14 Average response time of requests initiated by end users, Tform

Figure 5.15 Average network latency time in between and user and portal server

520

530

540

550

560

570

580

590

T
im

e
 (

m
se

c)

Average response time

CGL

NCSA

TACC

0

10

20

30

40

50

Average

T
im

e
 (

m
se

c)

CGL

NCSA

TACC

90

5.19 Future works: Applying GTLAB into Web 2.0

This section addresses the issues of applying Grid tags to Web 2.0 tools. Grid tags

should support client side implementations for browser clients. This will show that

GTLAB architecture is portable among various technologies. The important aspect is to

convert Grid beans as services that Web 2.0 gadgets and widgets can directly access to

them and utilize these services through well known client tools such as Google Web

Toolkit (GWT) [113], Direct Web Remoting (DWR) [114] or Asynchronous JavaScript

and XML (AJAX) [115]. We have sketched these main questions to review the GTLAB

components. GTLAB components would work generally within any technology or tool.

5.19.1 Discussion

This discussion addresses the issues of applying Grid tags to JavaScript (JS), AJAX

or Web 2.0 tools. Grid tags should support client side implementations for browser

clients. This will show that GTLAB architecture is portable among various

technologies. The important aspect is to convert Grid beans as services that Web 2.0

gadgets and widgets can directly access to them and utilize these services through well

known client tools such as GWT, DWR or AJAX. We have sketched these main

questions to review the GTLAB components. GTLAB components would work

generally within any technology or tool.

Find out how to manage session in JS?

How to embed tags in the JS?

How to maintain user/cookie with JS?

91

Cookie management is only for JSF type server side applications. HTTP is not

stateful so cookies maintain states for user sessions. But in case WSRF the server side

is already stateful, so we do not need to worry about cookies. WS-Notification [116]

provides a callback system for submitted jobs.

How to use shared memory for JS session?

If WSRF keeps the state on the server side, client would not need to worry about the

session/shared memory ever. But the current GTLAB framework keeps many job

submissions in the session and stores them in the hash tables within session memory.

How to extract and parse Grid tags from the JS page?

JS pages are HTML or XHTML pages. So they are structured. If parse the whole

page, we can easily extract the Grid tags out of the page. If possible, using XHTML

helps to keep the pages simple and machine readable.

How to handle Web forms within JS?

This question has two parts. 1) How to submit Web forms? 2) How to handle user

inputs to text areas?

In case of JS implementation of GTLAB there won’t be any Backing bean

implementation; rather all bean interfaces and capabilities are already discovered and

implemented as Java API. We need to implement these interfaces using the scripts. So

the action scripts are bound to ‘Submit’ or action buttons that calls the right methods to

access Grid services.

On the other hand, GTLAB manages user inputs through Resource bean. There

won’t be any bean in the scripts. But the same idea inspires the scripts. So we can

implement get/set script methods to share common input values. These values are kept

92

in the session memory. Then the values are passed to the tag attributes. These are

detailed implementation issues or details. We need to worry about the major

architectural problems that are addressed in the first five questions.

5.19.2 Web gadgets

Gadgets can access to Standalone JSF code using HTTP object and performing

POST operation. If you assume portlet pages there, you have to define a workflow to

submit the job.

MyProxy � File transfer � Job Submit

The issue here is to store MyProxy in the session where gadget runs on. The other

important aspect is to perform authentication thorough gadgets.

5.20 Summary

In this chapter, we have summarized the architecture of Grid tags and beans and we

have reviewed the research issues that we raised. We have sought solutions to session

management of requests in GTLAB that can handle requests. We consider our

persistency mechanisms have also long term caching capabilities. We also handle

synchronous request/response model in asynchronous fashion. We attempt to manage

jobs and monitor the progression in timely manner. We have conducted experiments to

show GTLAB does not add any overhead to existing servlet container. Our results are

shown that the overhead is negligible for our architecture.

93

Chapter 6

Applying workflows to Grid portals

6.1 Foundations of scientific workflows

Scientific workflows compose, execute and monitor multiple jobs in a logical

sequence. Scientific workflows symbolize sophisticated application patterns. These are

usually typical scientific experiment analyzing procedures. In some fields the

experimental research are based on legacy workflow applications. For instance,

bioinformatics community uses Taverna tool to develop and enhance bioinformatics

workflows.

There is lack of knowledge when developing scientific workflows. Some scientific

fields already have constructed conventions and experience on building workflows. But

most of the science communities are new to these emerging technologies. Even some of

them have very limited knowledge and background on using computer-based

94

applications. On the other hand, many disciplines have stovepipe solutions to organize

metadata for processing the simulations. This transition process for converting

applications to computer-based workflows becomes foundations of the building

workflows. A typical example of scientific workflow is to collect raw data from

sensors, instruments and similar sources. Then store them in high capacity storages.

Following by feeding application program to utilize the data and get some results.

Results can be shown to scientists in certain ways: 1) Raw data 2) Plots 3) 2D images

4) 3D images 5) Animations. The form of showing the results of the applications is

called visualization.

The applications can be characterized in very broad range in our study. Some

applications are time sensitive, real time. Some of them controlled by the users and

require human intervention. And most of the applications are enacted as “batch”

process. The following is a list of application domains that we worked on.

1. Material science applications

2. Instrument and sensor based applications

3. Earthquake modeling applications

4. Molecular Science

Scientific workflows are available to use in certain scope of computer software:

including operating system, application software, middleware applications. For

instance, workflows are available for local clusters in operating system level. Scientists

can facilitate these applications by using command-line scripts or desktop tools.

95

6.2 Importance of workflows in Grid portals

Grid environments and science gateways are utilizing applications run on different

domains and on the Web. In order to support interoperability on the Web, we usually

use Web services interfaces for legacy applications. Grid portals also provide

portability of application processing and more importantly monitoring. Another aspect

is to aggregate a lot of applications in well accessible platform. It is very similar to a

shared desktop application that scientists can access through the Web.

Science applications run in a logical order, tasks are depend on the previous task

results. Grid portals aggregate science applications within a flow control. Hence, Grid

portals collect all the features of workflow tools in a Web environment. The portlets are

responsible for composing a workflow, executing it and keeping track of its progress.

Portal events are part of Web application framework such as starting a workflow,

stopping it, resuming it. There are difficulties to maintain all the events occurred in the

Web environment. Events are initiated by end users by submitting a Web form within a

browser session. Portal server needs to handle requests from different users and keep

track of the user sessions in asynchronous environment.

In a general approach Grid portals use portlets to split workflow processes into

reasonable parts. For instance, composer could be a portlet, executer could be another

portlet and monitor is also portlet. These three portlets can be grouped as in a Web

application called workflow portlets.

Interoperability of portlets is another issue with portals. Portlets should talk to each

other in a straight-forward fashion. The pushing notifications within portlets allow

workflow portlets to trigger chain of events. Therefore, workflow portlet can interact

96

with every other component within portal application. Such workflow can update

calendars, drop messages to personal mailboxes etc.

6.3 Legacy workflows for Grid systems

There are numerous workflow frameworks exist in Grid systems. Most of the

workflow frameworks utilize Web services to facilitate interoperability including

Taverna, Kepler [117, 118], Business Process and Execution Language for Web

Services (BPEL) [119], Pegasus, and Chimera [120]. We are going to evaluate Taverna

and BPEL workflows in great detail in the following sections:

6.3.1 Taverna

The Taverna project has developed a tool for the composition and enactment of

bioinformatics workflows for the life sciences community. The tool includes a

workbench application which provides a graphical user interface for the composition of

workflows. These workflows are written in a new language called the simple

conceptual unified flow language (Scufl) [121], where by each step within a workflow

represents one atomic task.

The new conceptual language is represented as XML based syntax that can be

deployed as Web services. Bioinformatics requirements led to the specification of

Scufl. This conceptual language process steps of the workflow that represents atomic

tasks. A workflow in the Scufl language composed of three main elements:

(1) Processors

(2) Data links

(3) Coordination constraints

97

Processors are applications or filters that take inputs and generate outputs. Data

links pipes the flow of data between processors. Coordination constraints restrict the

execution between two processes where enforcing an order among processors.

Scufl is supported by the Freefluo [122] enactment engine where Freefluo executes

the Scufl instances. Taverna system which includes Scufl, Taverna workbench and

Freefluo is widely used in several Genome and Bioinformatics project and tested by

their user community.

6.3.2 Kepler

Kepler [117] is a scientific workflow environment in which scientists compose,

execute and control analytical procedures. Kepler provides Graphical User Interface

(GUI) for design and execution tools to support actor-oriented modeling paradigm.

Kepler workflows can be sketched in XML. Kepler is built upon Ptolemy [120] system

that controls the execution model via directors. Workflow steps are described as actors

that can utilize data sources, sinks, filters etc. Actors can have multiple input and output

ports to direct the flows. Also parameters specify behaviors of the actors.

Actors can run on local runtime environment as well as extend distributed execution

via Grid and Web services. Kepler currently supports Java Native Interface (JNI) for

different language platforms as well. Other workflows like Taverna are all based on a

single dataflow execution model, while Kepler handles many.

6.3.3 Karajan

The Karajan [123] workflow framework provides access to Grid services by using an

XML-based definition language. Karajan can be utilized in various platforms. Karajan

98

has its own parallel and structural language that is adopted for Grid services needs.

Users can define jobs and their lifecycle management using the Karajan language.

Karajan scripts are run by a Karajan engine, which may be embedded in a Karajan

service.

Karajan service is a workflow engine that can be accessible by several ways such as

polling, call-backs, and persistent data retrieving. When users submit their workflows,

Karajan service interprets these inputs through Karajan libraries. Then the engine

creates client stubs for the tasks defined in Karajan script. These tasks are submitted to

the Grid services using Java CoG abstractions.

6.4 Handling Directed Acyclic Graphs in GTLAB

GTLAB is designed to utilize several DAG frameworks in Grid computing including

Globus [61] toolkit (by using Java CoG interface “taskgraph”) and Condor DAGMan

(by using the Birdbath [67] Web services interface). DAGs are built by application

programmers and are embedded into JSF portal pages. Grid tags help to compose

DAGs with dynamic parameters entered by end users within portlet pages. Grid tags are

also responsible for executing workflow by initiating ‘submit’ tags. In Figure 5.4 the

first job moves the input file from a remote host to the execution host. The second job

runs a script on the execution host depending on completion of the first job. In other

words, the script cannot run unless the input file is ready on the execution host. Finally,

Grid tags allow users to keep track of the execution of the DAG by facilitating handler

tags.

99

Java CoG Taskgraph: Java CoG encapsulates Grid services clients in abstract

interfaces. In addition to Grid services, CoG interfaces also introduce a DAG

expression capability, which is called taskgraph: pipelining a few Grid services calls as

DAG. A CoG taskgraph is a DAG interface that is built using the Java CoG API. The

CoG DAG builds workflows on top of Globus toolkit services such as GRAM and

GridFtp. All service calls and their order and dependency relations are defined within

taskgraph interface.

GTLAB implements a layer on CoG API that is encapsulated by XML tags. For

instance, the taskgraph interface is used by <o:multitask> tag. These XML Grid tags

are supported by Grid beans. Grid tags are injectors for Grid beans (using Inversion of

Control design pattern [30]). They initialize beans and manage their lifecycles. A

<o:multitask> tag can define attributes (see Figure 6.1) for taskgraph including id,

taskname, handler and persistent. multitask also can contain dependent task objects are

represented as sub tags including <o:myproxy>, <o:fileoperation>, <o:jobsubmit>,

<o:filetransfer> and <o:dependency>.

Application developers compose their DAG scenario by using Grid tags and beans

together within GTLAB framework. In this case, DAG attributes are filled by the

developers. Some of the attribute values are application dependent and so they are

static. For example, the Globus toolkit provider attribute can be set as GT4 for entire

portal. On the other hand, some parameters are provided by the end user through input

forms. These attributes must bind HTML input text by using expression language

semantics within JSF.

100

 Condor DAGMan: Condor [34] is an environment for scheduling and executing

applications on distributed networks of computers. DAGMan is a tool for describing

complex application workflows to be executed on Condor in terms of directed acyclic

graphs. In this case, GTLAB allows the user to prepare or transfer descriptions of

Condor jobs or workflow scripts described with the DAGMan. End users can return

later and monitor the progress of the jobs.

Condor manages job submissions to Globus-based Grids through Condor-G [69].

GTLAB provides a web application environment which can turn out to be a portlet for

Condor DAGMan by introducing two additional JSF Grid tags: <o:condorDagman/>

and <o:condorSubmit/>, which we describe below.

<o:condorSubmit/> is for single job submission to Condor-G resources.

<o:condorDagman/> is used to describe composite DAGMan jobs and their

dependencies along with a scripting file. Similar to our <o:multitask> tag, these tags

provide access to Condor services in terms of using Condor beans. Our Condor beans

have capabilities to prepare Condor jobs, submit jobs to Condor resources and manage

the lifecycle of submitted jobs.

Condor has no equivalent Java client libraries that correspond to the Java CoG for the

Globus toolkit. However, Condor provides Web services interface called Birdbath [67].

This provides an XML abstraction of the programming interfaces that can be bound to

different languages such as (in our case) Java. Our Condor beans are built on top of

Birdbath Web services clients. The Birdbath layer allows us to program Condor

capabilities within Java Beans and associated Grid tags allow us to describe job

101

parameters by using dynamic Web interfaces. In this case, we use Web services clients

to program Condor, instead of using command-line interface.

Birdbath client stubs are developed from the BirdBath Web service interface. We

have packaged Birdbath clients as jar and added it to the library.

Figure 6.1 XML schema of multitask represents a DAG. It shows the relationship of Grid tags
by defining dependency tag in GTLAB.

6.5 Design and Architecture of GTLAB Workflows

We consider in this section strategies for supporting more complicated workflows

than can be represented by DAGs. Our goal in GTLAB is not to reproduce extensive

pre-existing work in this field but to instead take advantage of it.

102

DAGs are very useful in case of simple workflows such as submitting a few tasks in

a group. We have added new features to GTLAB such as the ability to build sub-graphs

to allow partially ordered tasks. Partially ordered tasks can group the sequence of the

tasks based on their dependency. But in case of enhanced workflows, DAGs are not

sufficient. For example, if a user needs to try and run the simulation many times with a

DAG, the DAG has to maintain loops. If an application portlet needs to provide

dynamic flow control based on constraints, the DAG has to support conditional

branches. Those features do not exist within DAGs. Thus, a scientific community has to

facilitate these capabilities; they need to use workflows that cannot be expressed as

simple DAGs. Directed graphs naturally do not handle this type of data structures. Our

solution for supporting these more complicated workflows is described in this section.

Workflows are sophisticated flow control mechanisms of group of tasks. The

foundations of Grid workflows are described in a special issue of Concurrency and

Computation [39]. The tasks could be parallel, sequential, or concurrent. Workflows

can handle loops, branches and conditional branches. Workflows can be overviewed in

three main parts: 1) Composer, 2) Enactor, and 3) Monitor.

Composer: The composer is an essential part of the workflow representations.

Workflows represent services as nodes and constraints as edges to the nodes. In this

case, the top node is the starting point and intermediate nodes denote tasks and local

filters. Edges denote dependencies. This structure could be a graph where nodes

correspond to tasks and edges corresponds to relations. Also direction of the edges can

limit the flow similar to flow charts.

Figure 6.2 shows a composition of three Grid tasks in order.

within Taverna is an interesting approach. Taverna can utilize some services with local

clients such as MyProxy. Although other Grid services already have Web services

interfaces in GT4. These services can be scavenged to Taverna. Therefore, we are able

to manage Grid services workflows through Taverna.

Figure 6.2 Taverna composition of three major Grid tasks in a workflow

Enactor: An enactor is a workflow engine that process nodes in the order determined

by the composed graph. End users provide values for workflow inputs. Workflow

processing results in with work

103

shows a composition of three Grid tasks in order. Supporting Grid services

within Taverna is an interesting approach. Taverna can utilize some services with local

roxy. Although other Grid services already have Web services

interfaces in GT4. These services can be scavenged to Taverna. Therefore, we are able

to manage Grid services workflows through Taverna.

Taverna composition of three major Grid tasks in a workflow

An enactor is a workflow engine that process nodes in the order determined

by the composed graph. End users provide values for workflow inputs. Workflow

processing results in with workflow outputs. An enactor can pipe inputs to one action

Supporting Grid services

within Taverna is an interesting approach. Taverna can utilize some services with local

roxy. Although other Grid services already have Web services

interfaces in GT4. These services can be scavenged to Taverna. Therefore, we are able

Taverna composition of three major Grid tasks in a workflow

An enactor is a workflow engine that process nodes in the order determined

by the composed graph. End users provide values for workflow inputs. Workflow

flow outputs. An enactor can pipe inputs to one action

104

that is output of the previous one. An enactor also maintains constraints, branches,

loops and parallelism.

Monitoring: Monitoring follows up the processing steps. It also manages lifecycle of

the workflow. End users are able to interrupt the workflow to pause or cancel the

execution of the workflow at each step.

Unlike DAG composition within GTLAB, workflow composition is out of scope of this

work. In case of DAGs there is only a few tags definition exist such as multitask,

jobsubmit, myproxy, fileoperation etc. GTLAB provides one-to-one mapping for each

entity in DAG definition. But workflows are more comprehensive than DAGs, and

there are many entities to define a complete workflow. Workflow policies are described

by their own composition language. We either need to provide one-to-one mapping of

each entity that exists in the workflow language, or Grid tags could import workflow

policy as whole within GTLAB. We prefer the latter, to embed built-in workflow files

into the enactor. The enactor takes the workflow description file as an input to start

workflow engine for execution.

Our strategy for supporting workflows is as follows: GTLAB framework binds an

enactor engine to a ‘submit’ button within a Web form on the portal page. Once the

button is clicked by an end user, the enactor engine takes control of workflow along

with the composition document. These workflow documents are already checked for

validity. Workflow frameworks define their composition rules as explained in great

detail in the next section. Finally, the engine starts running at the backend to process

action steps.

105

GTLAB monitoring features are listed as status updating, cancelling, pausing, and

resuming the jobs. GTLAB assigns unique handlers for all submitted workflows within

the user session. These handlers are associated with ‘handler’ tags. The handler tag

utilizes the capabilities of monitoring bean by using attributes and sub-tags.

6.6 Taverna Use Case

Taverna is workflow tool for composing and executing Web services. Its main target

is bioinformatics applications, but it can in fact be applied to general workflow

composition problems. Taverna includes a graphical user interface workbench that is

used to formulate workflows. The Taverna workbench solves issues of complexity of

the workflows by providing user friendly interface. The workbench facilitates

diagrammatic and explorer representation of workflows. It allows users to compose

their own workflows or to load previously designed workflows, such as may be

obtained from a community repository with expert contributors. The workbench also

lists the available resources (e.g. Web services) where the workflows can run. After the

resources and enactor engine types are selected by a user, he or she can start the

workflow and can monitor progression. The user can interrupt the workflow for

cancelling a step or stopping the workflow.

The Taverna workbench relies on XML-based Scufl workflow scripting language.

Scufl consists of a network of processors and links. In addition to basic entities, Scufl

also can have input and output nodes and constraints for processors. The Scufl language

primarily is designed for users who are familiar with Web forms and scripting

106

languages to use Web resources. Scufl is practical and is designed with extensibility

features.

Workflow portlet: Generally a workflow portlet should contain these three major

parts: 1) Defining workflow components and their relationships. 2) Executing the

workflow: in case of Scufl, we use the Freefluo [122] enactor engine. 3) Monitoring

execution flow and applying capabilities like resume checkpoint, cancel, remove, etc.

Typically the first and third steps are tied to a strong graphical user interface such as the

Taverna workbench.

Building a workflow composition environment with the graphical user interface

features require many visual designs to accomplish with a success. The Taverna

workbench is already available for composing workflows. Building a workflow

composer out of Taverna is out of GTLAB’s scope. But we can alternatively provide a

text field to compose workflows in XML (e.g., Scufl) on the portlet page. However

there are two drawbacks of this approach; 1) it is hard to catch syntax errors when

composing a workflow, and 2) the Scufl document should be validated against Scufl

schema. This process is offline and requires additional efforts. Scufl composition is

out of scope for our current GTLAB work. However, it is common for Scufl-defined

workflows to be reused and shared between developers, since many scientists are

interested in the same basic workflow.

The workflow portlet application utilizes extended GTLAB features to submit Scufl

workflows. This portlet loads a Scufl workflow file, collects input values from end

users, submits the workflow on Taverna, and monitors the results inside the GTLAB

session framework.

107

Figure 6.3 A user interacts with a workflow portlet to utilize Taverna enactor. User provides
parameters by submitting a Web form that start the chain of events in order.

Figure 6.3 illustrates the handling of Taverna tags within GTLAB. In this case,

Taverna tags are embedded into JSF portlet page integrated with a Web form. End

users only see the Web form with a few text fields and submit button. They never see

the Grid tags and JSF tags that build the portlet page. This is common for all Web

applications. When the end user submits a Web form through the portlet page, JSF

intercepts this request and calls the associated action methods of Grid beans. Next, Grid

108

beans load the appropriate Scufl document and input parameters to Taverna bean.

Finally, the bean method starts execution of the workflow on Taverna enactor.

GTLAB assigns job handlers to each submitted workflow within the user session so

that keeping track of the progression. In case of Taverna, the handlers synchronize with

Taverna monitoring services to follow the workflow states.

Taverna Security: Taverna generally works in non-secure environments with Web

services that can be used anonymously. The Taverna workbench uses local filters and

scripts. The main concern of bioinformatics community is to process massive data by

using complicated workflows. However, security is a critical issue in Grid services that

rely on secure connections. Traditional Grid services apply GSI security [73] by using

X.509 certificates. Since Taverna can facilitate emerging Web services technologies,

we need to employ WSRF [60] and GT4 services within Taverna. Therefore, it is

essential to address whether WS-Security [124] is applicable to Taverna processors.

Similar problem has been addressed by [125] extending Taverna workbench adding

new processors that support WS-Security.

Figure 6.4 show an alternative approach to protect Taverna services by PERMIS

system. In this case, we restrict general user accesses to Taverna services through

portal. Therefore, the authorized users can only enact Taverna workflows within their

portal user spaces.

109

Figure 6.4 Grid portal support Taverna and PERMIS authorization schema.

6.7 Persistency issues of workflows within GTLAB

Grid workflow compositions are usually provided by community scientists.

Workflows are well-studied experiments and they are reproduced by the users. As a

result, keeping good workflows in a repository and then accessing with provenance is

crucial for Grid portals. There are various ways to provide a well established persistent

repository for workflows and data. i) File systems may be persistent repositories, ii)

database access is another way of keeping resources persistent. iii) WS-Context service

provides service based access to the repository. The advantage of using service based

storage is to provide provenance and ontology.

6.8 Discussions and Conclusion

Workflow extensions to GTLAB increase the usability of Grid tags in wide area of

scientific applications. Most of the science gateways are managing execution steps

110

intensively. Such a case is the VLab portal that facilitates simulation parameters and

refines them within first round of iterations. In the next stage, application is started and

results are shown in visualization environments. Similarly more complex science

gateways can utilize GTLAB framework for their application systems.

Portal persistency mechanism provides a repository of ready-to-use workflow

compositions. The persistent storage can be accessed by metadata and provenance.

Inexperienced users can first try the selection of good examples to exercise the best

practices in that scientific arena while they are passing the learning curve.

Different workflow compositions are persisted and archived in the repository while

their execution steps are closely watched and are reported. These stored steps of events

can be use for future failures and enables the system to roll back to stable level and

rerun form that point.

In this chapter, we have evaluated our initial VLab portal development work, which

constructed workflows for Material Sciences that are based on DAGs. We provided

support Globus toolkit by using Java CoG. Extending this initial work, we have added

support for Condor DAGMan by using Birdbath services. We have also evaluated how

to extend our architecture to support more complicated workflows and have

implemented support for Taverna workflows. This allows us to deploy and manage

more comprehensive workflows using Web services. We have designed additional Grid

tags for Condor DAGMan and Taverna workflow. In conclusion, we showed that our

GTLAB framework is extensible and applicable to different types of workflow

frameworks.

111

In the next section we will discuss adapting GTLAB framework to work with BPEL

and Kepler workflows.

6.8.1 Discussion of Kepler and BPEL extensions

Kepler actors can have multiple input and output ports to direct the flows. Also

parameters specify behaviors of the actors. Actors can run on local runtime

environment as well as extend distributed execution via Grid and Web services. Unlike

Taverna that is based on a single dataflow execution model Kepler enables workflows

to handle multiple flows.

GTLAB is trying to abstract all different workflow approaches in a portal container

that users can customize application specific workflow mechanisms. For example,

application users compose the generic workflows for specific tasks. Then in usual case,

end users enact these workflows by providing parameters while we provide additional

parameters that end users can choose to run the experiments in different workflow like

Taverna or Kepler. Although, the end users are technically able to run any workflow,

they should also know whether their system can run this workflow. On the other hand

generic workflow helps people from diverse disciplines. Generic workflow portlet can

run on either Taverna or Kepler.

 112

Chapter 7

Portlet Access Control Mechanisms

One of the benefits of Grid portals is to grant personal workspace and to provision

computing resources in the Grid. Grid tag libraries are very useful to manage Grid

backend services that are individually used by a specific user. GTLAB provides a

workspace environment to each user that can manage jobs, credentials and metadata.

On the other hand, not only scientists utilize the personal accounts, but also they

collaborate on the observations and they exchange data. To this extend, we need to

provide an access control mechanism to allow scientists to share data for collaboration.

In this chapter, we review CIMA portal to point out interesting access control

problems exist in the current JSR 168 portlet specification. We also give detailed

architecture of CIMA about how we solved these issues.

113

7.1 User account management in Grid portals

Portals aim to give different look and feel environments to the users. Users are able

to customize their own browser windows with their selected applications. In a simple

science gateway, there are many types of users can access to the gateway. Portal

administrators are responsible for configuring and maintaining the portal resources. The

scientists manage core applications and naïve users who browse on the results or see

the effects of the applications.

Portals have services for user management, authentication, authorization and groups.

These concepts are not new in distributed systems, thus portals mimic these capabilities

in higher level. Although portals provide services for user management and limited

access to resources, portals interfaces are designed to serve end users in three tier

architecture. However, in the middleware the services also require secure accesses to

the Grid resources. Thus, account mapping among tiers is essential for Grid portals.

There are certain account management techniques comply with these requirements

including MyProxy, GAMA and Purse. These technologies are overviewed in the

context of authentication.

7.1.1 Authentication

General portal page provide anonymous access to the public just like an open Web

page. The first portal page is also gateway to the legitimate users. Authentication

usually is provided by using username/password pairs. Credentials also can be used for

authentication. After valid authentication, portal services load user’s applications and

environment settings such as color, style and font types. Although the user context is

setup, accessing to the services may require authentication tokens. Depending on the

application type portal server can provide various authentication tokens such as

username/password token or Grid crede

Portal user tokens are mapped to Grid credential in several ways. One of the OGCE

methods is to provide a MyProxy portlet

portal users. In this case two

portal and then gets the proxy credential respectively. During the portal session Grid

credential proxy will be alive for two hours. The advantage of this method is that user

keeps the Grid access under control. There is no way to portal proxy credential get

user’s behalf. On the other hand, there are administrative complexities such as users

have to deal with two separate accounts, their applications and their maintenance.

114

setup, accessing to the services may require authentication tokens. Depending on the

application type portal server can provide various authentication tokens such as

username/password token or Grid credential.

Portal user tokens are mapped to Grid credential in several ways. One of the OGCE

methods is to provide a MyProxy portlet [27] that gets proxy credential to the logged in

portal users. In this case two-level authentication is required. The user first login to the

n gets the proxy credential respectively. During the portal session Grid

credential proxy will be alive for two hours. The advantage of this method is that user

keeps the Grid access under control. There is no way to portal proxy credential get

lf. On the other hand, there are administrative complexities such as users

have to deal with two separate accounts, their applications and their maintenance.

setup, accessing to the services may require authentication tokens. Depending on the

application type portal server can provide various authentication tokens such as

Portal user tokens are mapped to Grid credential in several ways. One of the OGCE

that gets proxy credential to the logged in

level authentication is required. The user first login to the

n gets the proxy credential respectively. During the portal session Grid

credential proxy will be alive for two hours. The advantage of this method is that user

keeps the Grid access under control. There is no way to portal proxy credential get

lf. On the other hand, there are administrative complexities such as users

have to deal with two separate accounts, their applications and their maintenance.

Figure

Grid Account Management Architecture (GAMA)

MyProxy portlet by combining Grid accounts and portal accounts in a trusted server in

Figure 7.1. Once user logs in to the portal, the proxy credential will be set and ready to

use. Also account creation relatively easy too. Portal admin creates port

generates Grid credentials and store them in the repository. GAMA user interfaces are

packaged as JSR 168 portal and runs in GridSphere environment. We preferred to use

GAMA in CIMA portal because JSR 168 portal support. It is relatively easy t

computer illiterate people who do not need to know about underlying Grid services to

issue the proxy credentials.

The Portal-based User Registration System

manage Grid accounts in Web applications. There was no portlet interface of PURSe

when we choose to use GAMA. The difference is PURSe does not

115

Figure 7.1 Snapshots of GAMA enabled CIMA portal

Grid Account Management Architecture (GAMA) [79] eliminates side effect of the

ombining Grid accounts and portal accounts in a trusted server in

. Once user logs in to the portal, the proxy credential will be set and ready to

use. Also account creation relatively easy too. Portal admin creates port

generates Grid credentials and store them in the repository. GAMA user interfaces are

packaged as JSR 168 portal and runs in GridSphere environment. We preferred to use

GAMA in CIMA portal because JSR 168 portal support. It is relatively easy t

computer illiterate people who do not need to know about underlying Grid services to

issue the proxy credentials.

based User Registration System (PURSe) [80] is another option to

manage Grid accounts in Web applications. There was no portlet interface of PURSe

when we choose to use GAMA. The difference is PURSe does not rely on a trusted

eliminates side effect of the

ombining Grid accounts and portal accounts in a trusted server in

. Once user logs in to the portal, the proxy credential will be set and ready to

use. Also account creation relatively easy too. Portal admin creates portal accounts

generates Grid credentials and store them in the repository. GAMA user interfaces are

packaged as JSR 168 portal and runs in GridSphere environment. We preferred to use

GAMA in CIMA portal because JSR 168 portal support. It is relatively easy to use for

computer illiterate people who do not need to know about underlying Grid services to

is another option to

manage Grid accounts in Web applications. There was no portlet interface of PURSe

rely on a trusted

116

server. PURSe utilizes a certificate authority and MyProxy repository to create and

issue Grid credentials. It also accepts existing Grid credentials. OGCE has PURSe

portlets [126] that support JSR 168 compatible Grid portals now.

7.1.2 Authorization

Portals use authorization schemas to utilize fine-grained user access rights on the

resources. Grid services and legacy applications also use authorization systems at

service layer. The issue is to map the different level of authorizations without

weakening the security. UNIX authorization framework is well known example of

access control and group management on Unix file system.

We have overviewed the services have applied authorization schemas are Shibboleth

and PERMIS.

Shibboleth [83]: Shibboleth provides single sign-on among domains while keeping

user identities private. Shibboleth services are based on Security Assertion Markup

Language (SAML) [84]. Shibboleth has two major parts, Identity provider and Service

Provider. An identity provider creates, maintains the user accounts while service

provider accesses to the resources. Shibboleth also provide a “Where are you from?”

(WAYF) service for third party accesses decisions. WAYF service mediates among

identity services of requester and service provider. The positive side of the Shibboleth

is to federate portal instances among the organizational boundaries.

PERMIS [87]: Privilege and Role Management Infrastructure Standards Validation

(PERMIS) provides role based authorization management among multiple domains.

PERMIS uses XML based policies defining rules, specifying access control decisions.

Roles are secured by X.509 certificates and stored in Lightweight Directory Access

117

Protocol (LDAP) repositories. Policies are enforced during service access by

Authorization Enforcement Function (AEF) and then the service negotiates with

Authorization Decision Function (ADF) to assert policies. The advantage of PERMIS

architecture is to fit into role based portal architecture.

7.1.3 Portal Users and Groups

Portal users are defined as entities to access the resources with limited rights.

Naturally some users would have access to all resources like super users and some end

users can only access to resources with very limited capabilities. Current portal

designers generalized the users with the roles. The most common roles are super,

admin, user and guest where super and admin most privileged users.

Role Based Access Control (RBAC) [127] defines rules with set of permissions to

the users. Users are assigned to a role or combination of roles. Most popular portal

containers apply this schema such as Jetspeed, GridSphere and Sakai as essential part

of the user management service.

118

Figure 7.2 Relationships of CIMA portal roles, users and groups

Portal groups are composed of the users who are willing to access the same

resources for collaboration such groups can be named as crystallographers in case of

CIMA portal [47, 92]. Groups are functionally similar to Unix groups. Group member

can share the common resources and they will have accessing and modifying rights on

the shared resources.

Figure 7.2 depicts the relation of roles, users and groups among CIMA portal. Roles

are defined in GridSphere portal framework and they are default values including

super, admin, user, and guest.

119

Where super owns the portal resources, admin has right to create users and maintain

portal resources, users have limited access to the portlets and guest is the anonymous

portal page. There are CIMA groups including crystal provider, crystallographer and

user. Where crystal provider owns the raw samples, crystallographer analyze and

classify the samples, users can see their own samples and the other of samples unless

they are private. CIMA users have roles when they created in first place and then admin

assign them in relevant groups.

CIMA portal currently uses GridSphere framework and its own specific role, user

and group schema within AccessControlManagerService. GridSphere support access

control with Role Based Access Control (RBAC) schema. GridSphere RBAC schema

has predefined roles. For example, GridSphere comes with four predefined roles:

• Super, admin, user, guest

CIMA Data Manager proposes roles as following:

• Provider, crystallographer, user and guest.

CIMA roles do not map with GridSphere roles, in contrast, GridSphere and its

portlet container support users. In order to define the contents mapping to CIMA

requirements, we need to describe groups within portlet contents. In contrast to

GridSphere that can only group the portlet applications.

CIMA utilized additional database tables to support its own group and roles. CIMA

portlets accessed to group tables with usernames and retrieved data from Data

Manager. This CIMA specific portlets are only able to run with GridSphere user

database. As a result CIMA portlets are tightly coupled with GridSphere.

120

CIMA portlet access control mechanism is based on a stovepipe solution. It does not

apply any policy for portlet contents. CIMA requirements are applied in a hard-coded

way. If they need to change the requirements and policies they need to elaborate the

mechanism and re-implement the new approach. That is the drawback of CIMA access

control mechanism. We need to abstract this approach to solve and adapt this solution.

7.1.4 CIMA Portlets for Partner Labs

CIMA portal provides portlets from each partner lab so that sharing and

collaborating on samples of various partner labs. Current implementation of CIMA

only allows adding portlets for corresponding partners. There is only one portal

instance running at Indiana University Molecular Structure Center (IUMSC) [128] that

can access all other resources using the portlets. This approach does not scale well and

brings administrative burdens. Each lab should facilitate its own portal server with their

administration staff. Shibboleth and PERMIS based authentication and authorization

systems will be applied to federate CIMA portals.

7.2 Controlling Access to Grid portlet contents

We have overviewed user management of portal architectures so that narrow down

the granularity problem within the portlets. JSR 168 portlet containers are designed to

support portlet components as smallest part; additionally JSR 168 does not enforce any

authorization mechanisms to portlet contents. JSR 168 able to describe user names as

subject, there is no associated access control list. In order to solve this problem we have

sketched the needs and our solution to portlet access rights and groups. We have

121

evaluated CIMA portal case in detail and implemented portlet groups on the

GridSphere that utilizing CIMA samples.

Table 7.1 Sample features in CIMA portal

Sample No Crystallographer Crystal

provider

Real Owner Permission

00001 IUMSC Dr. Chris Chris 0

00002 IUMSC Dr. Tall Tall 0

00003 IUMSC Dr. Graph Graph 1

00004 IUMSC Dr. CJ - -1

Table 7.1 Sample features in CIMA portal shows the sample information that

includes sample number, crystallographer, crystal provider, owner and permission.

Sample number is uniquely assigned once the provider places a crystal sample to the

portal. Permissions to the raw samples are 0 that means sample owner can change

metadata of the samples. Once the permission set to 1 then crystal owner cannot change

anything with the sample. After that crystallographers can publish these samples as

public or private. If it is private, only the crystal provider group that owns the sample

can see that sample. Public samples are displayed anonymously.

122

7.3 Implementation of the CIMA Crystallography Portal

7.3.1 Requirements

For the current work, a subset of requirements relating to user and administrative

interaction with data was chosen. These include the following:

� Remote users and in-lab crystallographers must be able to monitor an experiment

in progress, including viewing current and previously collected CCD frames and

associated relevant environmental and technical parameters;

� All raw data is owned by the lab which performed the experiment and collected

the data. In addition to the lab, represented by one or more lab administrators,

individual users can view (but not modify or delete) their samples;

� Lab administrators must be able to control sample ownership and visibility;

� Because the notion of when an experiment ends is not clearly defined (e.g.

experiments may be truncated after the fact or additional frames may be gathered

based on evaluations made during a run), lab administrators should be able to set

the end time of an experiment;

� Lab administrators must be able to add and remove users to an access control list

for a sample;

� Users must be able to view their samples, including all files and sensor readings

related to the experiment;

� Some sample data may be provided to the general public for educational or

public science awareness purposes;

� Users must be able to view the current status of the lab as a whole;

123

� Individual functions that are of general utility should be implemented in a

reusable, pluggable, standards-based manner as portlets that can be added or

removed by administrators or end-users as appropriate;

� The portlets must interact with a lab’s data manager software via Web services

calls;

� Users and groups will be managed by the portals container and access to all

functions of the portal will be provided by a single sign-on through the portal.

A prototype implementation of the crystallography portal was completed using

Jetspeed1 and CGI scripts. Although in the right direction, this implementation did not

meet our modularization requirement and so with the ramp-up of the NSF middleware

project and the availability of support from the OGCE group, we migrated to

GridSphere and JSF-based portlet clients to CIMA services as a fully JSR 168

compliant portal container. This assures a degree of survivability and lateral flexibility

to move the science process specific functionality to other containers if the need arises.

The requirements outlined above led us to develop the following portlets:

� A lab overview portlet that provides the current status of a facility and its

instruments;

� An administrative Admin portlet to support management of sample ownership

and other parameters related to individual experiments;

� A PublicSample portlet that provides sample data to all portal users and the

general public;

� A UserSample portlet that shows a logged-in user their samples and other

samples on whose access control lists they appear.

124

PublicSample and UserSample portlets also allow users to scan through all data

objects in an experiment (Figure 7.3). Per design choice some functions of the portlets

are made available as pop-up windows. These portlets provide all of the functionality

listed in the requirements above. Extensions to the portal’s basic group authorization

mechanism provide an access control list associated with each data collection.

Scientists can view and modify sample data from their X-ray diffraction

crystallography experiments based on their roles in this project and can add users to the

access control lists of their data sets. Nothing more than a Web browser is needed to

interact with the system.

Figure 7.3 UserSample portlet that allows users to stepwise scan through an experiment.

125

7.3.2 Architecture of the CIMA Crystallography Portal

Developing JSF Web applications includes support for UI components, independent

backing JavaBean code, and simplified management of HTTP request and session

parameters. UI components handle the interaction with users and communicate with

Web services through managed beans for such tasks as access to databases. Then we

use portlets to wrap the Web application so that we can make use of the user, group and

layout management from the portlet container (GridSphere), and also we can deploy

these portlets with respective configuration for different laboratories within the same

portal. Furthermore, since the relationship between our portal and data manager is

loosely coupled by using Web services, we can effortlessly deploy the portal and Web

services at diverse locations.

JSF Web applications handle the UI events and navigation rules to implement the

application controller logic. Stubs are generated according to the WSDL of Web

services via WSDL2Java tool provided by Apache Axis [76]. This allows access to the

Perl-based data manager services. The managed beans in the JSF Web application

invoke on the stubs to communicate with Web services and store the data returned by

Web services. JSF provides a value binding mechanism to make it easy for Web

applications to represent the data combined with managed beans to users.

These beans are populated with information from Web services calls to DM_WS.

They are used to set up the model for sample data and related parameters.

WQuerySampleDataBean and SampleDataBean acquire the basic information of

sample data, such as sample number, laboratory, instrument and so on. SampleInfoBean

and TemperatureBean obtain environmental conditions related to a specific sample,

126

like temperature and humidity. SampleFilesBean and FilesBean inquire CCD frames

both in raw and jpeg format pertaining to a specific sample. SampleCameraBean and

CameraBean query camera images of laboratory and crystal during the experimental

period.

7.3.3 Identity Mapping between Portal and Data Manager Service

A significant problem faced in the design of the CIMA crystallography portal is the

mapping of identities and associated privileges of portal users to identities associated

with data sets gathered by the My Manager component.

The authorization model used by the portal container is that of users assigned to a

limited set of four roles (Super, Admin, User, Guest), whereas the data manager uses an

authorization model with users, groups and access control lists that can contain users

and groups. Gridsphere does have a notion of groups but this is related to what users

can access which portlets rather than a Unix-like notion of a general authorization

mechanism for sets of users. Since the portal does not provide a flexible authorization

scheme, a design choice was made to perform the mapping of portal users to data

owners, groups and access control lists in the logic of the portlets used to access the

data manager.

As mentioned above, there are three portlets, PublicSample portlet, UserSample

portlet and Admin portlet. For UserSample and Admin portlets, users can only access

the related data according to their roles. Thus, an approach is required to match user

identities between portal and data manager service.

Then the username can be used to query the database combined with GridSphere to

get the information of the user, such as user’s full name, email address and groups, etc.

127

Because the current version of GridSphere doesn’t support a hierarchy of groups

containing users, we use GridSphere portal groups to control access to portlets that, in

turn, control access to data objects. Several GridSphere portal groups are created:

“<lab>_admin” represents the lab administrators who can access Admin portlet and

are in charge of the ownership and access control of samples; “<lab>_client”

represents portal users who are clients from a single lab and can access UserSample

portlet. Access control lists are implemented as other groups titled as research group

names, the members of which can view sample data from the group they belong to

(non-public samples). The lab administrator can control the access list for a sample

through Admin portlet according to users and groups mentioned above. The first two

groups (<lab>_admin and <lab>_client) are used to separate users from different

laboratories when there are multiple CIMA crystallography portals deployed in the

same container. Gridsphere specific database tables are required to get user

information. Finally, the user name and groups information are transferred as

parameters to Web services to fetch sample data.

7.4 Summary

In this chapter we have summarized the access control methods of portlets within

JSR 168 portlet containers. We have emphasized that fine-grained access control

schemas are not described in the JSR 168 specification. The new specification (JSR

286) claims to cover these features. We have implemented and have shown a model of

portlet access control through GridSphere portal framework. In general, accesses to the

user management database are tightly coupled with GridSphere framework. Nowadays

128

open source portal community converging to standard solutions of user management. In

the future, we can abstract these portlet group capabilities and synchronize our solution

to the other portal frameworks.

 129

Chapter 8

Conclusion and Future Works

Web portals have been gaining more attraction and usage as the number of online

users increases. In addition to current commercial Web portals, computing and Grid

portals, which are more specific to their respected topics, will be more important for

researchers and academia. A Grid portal would perfectly fit as an interface for Grid

services. As such, links to other online applications for batch job execution, massive

data transfer and information retrieval.

Despite the fact that the Web portals were initially intended to be used as

aggregating content providers, its infrastructure has caused the rapid development of

Grid environments through Web portals. The main characteristics of this Grid

computing environment are the following:

• File and data management

• Scientific application management

130

• Access to user-centric metadata services

• Sharing computing and data resources via Grid

• Pervasive security environment to establish authentication and manage access

rights to resources.

Grid portal technologies have been dramatically enhanced since last decade.

However, instead of fully utilizing all the above important features, many of the initial

approaches focused on specific Grid services. Most applications used standard open

interfaces of the Grid and tied with the middleware architectural paradigms. Grid

portals are good representatives of this type of approach.

From 2002, many science portals and gateways have been based on the reusable

portlet component model. Although this model is an important foundation, in practice

we have not seen the wide general adoption that was expected. Portlet repositories

exist [26], but generally portlets are designed to encapsulate functionality at a coarser

level than needed by most science portal. The problems are two-fold:

• Science portals have, for the most part, small communities of specialized users

that do not scale. An RSS feed reader portlet (e.g. [129]), for example, would

have thousands of feed sources that it could display. These could range from

major news services such as Reuters to personal blog feeds. Such a component

would be usefully shared among hundreds or thousands of portal installations

(supporting campus and corporate intranets, for example). The total number

users of all instances of this simple portlet could scale to millions. In contrast

the total number of users of PWSCF would number at most in the hundreds or

thousands, so a PWSCF portlet in the VLAB project is both much more

131

sophisticated and designed to support a much smaller community. We may

design a reusable PWSCF portlet, but it is unlikely to find much usage by other

science gateways than VLAB. Thus the design choices of the portlet API

ultimately do not reflect the requirements of the science gateway community, as

we discuss below.

• Science gateway portlets such as PWSCF do need to be based on reusable

libraries and tools because they are difficult to build. The JSR 168 portlet API is

only concerned with managing construction of HTML views and passing

incoming HTML form request parameters to the appropriate code logic that must

be written by developers. The reusability of the portlet action method’s code

logic is outside the scope of the portlet API. Likewise, the portlet API assumes

portlets themselves are independent, so there is no way to take a collection of

pre-developed portlets and express inter-dependencies between them when

building a new science gateway.

Our research has taken up where the portlet API leaves off. To address the problems

and limitations of the portlet component model for science portals, we have designed a

fine-grained component model architecture that is implemented as an XML based,

open, and applicable provided by the Grid Tag Libraries and Beans (GTLAB). GTLAB

is intended to support Grid services and portal development frameworks, as well as the

workflow engines such as Condor DAGMan and Taverna.

Our architecture consists of end user interfaces provided through Grid tag interfaces,

Grid bean interfaces and libraries, and metadata repositories. Grid tag interfaces may be

used by application developers to quickly assemble new user interfaces to science

132

applications. Grid beans are capable of communicating with Grid services as well as

matching with Grid tags. They also are independent of implementation details. The

metadata repositories, for example, may be independently designed either as file system

repositories, as traditional relational databases or as service-oriented context

repositories, which are connected later through bridges and adapters. The data of these

metadata repositories are retrieved to access archives or resubmitting similar tasks.

In GTLAB, we have designed each Grid service access point as an XML tag widget

that corresponds to Grid beans. In this way, we showed an extensible architecture that

can enable external Grid beans to GTLAB. In our design, we did not disregard to use

JSR 168 standard effort but, rather, searched for a way to adopt portlet contents as

represented by smaller and modular components. We understand that Grid portlets will

be utilizing workflows and component technologies, instead of defining each capability

as separate portlet. Not only GTLAB providing modular Grid components, but also it

shows a way to integrate and collect them in logical sequences such as directed acyclic

graphs. Therefore, the emphasis of our research is to experiment our approach on

different science gateways.

Case studies lead us to identify and develop research issues. For the QuakeSim

portal, we have remodeled its portal architecture to use Grid services by invoking

QuakeSim applications that reside on TeraGrid nodes as opposed to previous Web

service based approach. We also have built VLab portlets as the basis for GTLAB

framework by dealing with complicated user interfaces creation and providing their

transition to the Grid service clients, as well as managing metadata repositories.

133

Though GTLAB illustrated a number of important issues as presented throughout

this thesis, it continues to be the source of interesting research problems: for example,

providing workflow features of conditional branching and loops. As future work, we

see that a more general and comprehensive implementation of GTLAB including Web

2.0 features may be necessary.

This future work addresses the issues of applying Grid tags to JavaScript (JS), AJAX

or Web 2.0 tools. Grid tags should support client side implementations for browser

clients. This will show that GTLAB architecture is portable among various

technologies. The important aspect is to convert Grid beans as services that Web 2.0

gadgets and widgets can directly access to them and utilize these services through well

known client tools such as AJAX. Security of user credentials should be provided by

Web services to JS clients. Multiple job submission management and metadata tracking

should be studied.

134

Appendix A

Schema GridTagsXMLSchema.xsd

schema location: C:\Documents and Settings\manacar\workspace\GridTagsBeans\GridTagsXMLSchema.xsd
attribute form default:
element form default:
targetNamespace: http://www.ogce.org/gsf/task

Elements
dependency
fileoperation
filetransfer
handler
jobsubmit
multitask
myproxy
root
submit

element dependency

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

used by element multitask

attributes Name Type Use Default Fixed annotation
id xsd:string optional
task xsd:string required
dependsOn xsd:string required

source <xsd:element name="dependency">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="task" type="xsd:string" use="required"/>
 <xsd:attribute name="dependsOn" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>

attribute dependency/@id

type xsd:string

135

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute dependency/@task

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="task" type="xsd:string" use="required"/>

attribute dependency/@dependsOn

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="dependsOn" type="xsd:string" use="required"/>

element fileoperation

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

used by element multitask

attributes Name Type Use Default Fixed annotation
id xsd:string optional
command xsd:string required
hostname xsd:string required
provider xsd:string required
port xsd:string required
path xsd:string required
handler xsd:string required

source <xsd:element name="fileoperation">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="command" type="xsd:string" use="required"/>
 <xsd:attribute name="hostname" type="xsd:string" use="required"/>
 <xsd:attribute name="provider" type="xsd:string" use="required"/>
 <xsd:attribute name="port" type="xsd:string" use="required"/>

136

 <xsd:attribute name="path" type="xsd:string" use="required"/>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>

attribute fileoperation/@id

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute fileoperation/@command

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="command" type="xsd:string" use="required"/>

attribute fileoperation/@hostname

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="hostname" type="xsd:string" use="required"/>

attribute fileoperation/@provider

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="provider" type="xsd:string" use="required"/>

attribute fileoperation/@port

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="port" type="xsd:string" use="required"/>

attribute fileoperation/@path

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="path" type="xsd:string" use="required"/>

attribute fileoperation/@handler

type xsd:string

137

properties isRef 0
use required

source <xsd:attribute name="handler" type="xsd:string" use="required"/>

element filetransfer

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

used by element multitask

attributes Name Type Use Default Fixed annotation
id xsd:string optional
from xsd:string required
to xsd:string required
handler xsd:string required

source <xsd:element name="filetransfer">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="from" type="xsd:string" use="required"/>
 <xsd:attribute name="to" type="xsd:string" use="required"/>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>

attribute filetransfer/@id

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute filetransfer/@from

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="from" type="xsd:string" use="required"/>

attribute filetransfer/@to

type xsd:string

properties isRef 0
use required

138

source <xsd:attribute name="to" type="xsd:string" use="required"/>

attribute filetransfer/@handler

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="handler" type="xsd:string" use="required"/>

element handler

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

attributes Name Type Use Default Fixed annotation
id xsd:string optional
action xsd:string
actionListener xsd:string

source <xsd:element name="handler">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="action" type="xsd:string"/>
 <xsd:attribute name="actionListener" type="xsd:string"/>
 </xsd:complexType>
</xsd:element>

attribute handler/@id

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute handler/@action

type xsd:string

properties isRef 0

source <xsd:attribute name="action" type="xsd:string"/>

attribute handler/@actionListener

type xsd:string

properties isRef 0

139

source <xsd:attribute name="actionListener" type="xsd:string"/>

element jobsubmit

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

used by element multitask

attributes Name Type Use Default Fixed annotation
id xsd:string optional
hostname xsd:string required
provider xsd:string required
executable xsd:string required
arguments xsd:string optional
stdin xsd:string optional
stdout xsd:string optional
stderr xsd:string optional
handler xsd:string required

source <xsd:element name="jobsubmit">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="hostname" type="xsd:string" use="required"/>
 <xsd:attribute name="provider" type="xsd:string" use="required"/>
 <xsd:attribute name="executable" type="xsd:string" use="required"/>
 <xsd:attribute name="arguments" type="xsd:string" use="optional"/>
 <xsd:attribute name="stdin" type="xsd:string" use="optional"/>
 <xsd:attribute name="stdout" type="xsd:string" use="optional"/>
 <xsd:attribute name="stderr" type="xsd:string" use="optional"/>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>

attribute jobsubmit/@id

type xsd:string

properties isRef 0
use optional

140

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute jobsubmit/@hostname

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="hostname" type="xsd:string" use="required"/>

attribute jobsubmit/@provider

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="provider" type="xsd:string" use="required"/>

attribute jobsubmit/@executable

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="executable" type="xsd:string" use="required"/>

attribute jobsubmit/@arguments

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="arguments" type="xsd:string" use="optional"/>

attribute jobsubmit/@stdin

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="stdin" type="xsd:string" use="optional"/>

attribute jobsubmit/@stdout

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="stdout" type="xsd:string" use="optional"/>

attribute jobsubmit/@stderr

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="stderr" type="xsd:string" use="optional"/>

141

attribute jobsubmit/@handler

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="handler" type="xsd:string" use="required"/>

element multitask

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

children o:myproxy o:fileoperation o:jobsubmit o:filetransfer o:dependency

used by element submit

attributes Name Type Use Default Fixed annotation
id xsd:string optional
taskname xsd:string required
handler xsd:string required
persistent xsd:boolean required

source <xsd:element name="multitask">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="o:myproxy" minOccurs="0"/>
 <xsd:element ref="o:fileoperation" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="o:jobsubmit" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="o:filetransfer" minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element ref="o:dependency" minOccurs="0" maxOccurs="unbounded"/>
 </xsd:sequence>

142

 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="taskname" type="xsd:string" use="required"/>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 <xsd:attribute name="persistent" type="xsd:boolean" use="required"/>
 </xsd:complexType>
</xsd:element>

attribute multitask/@id

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute multitask/@taskname

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="taskname" type="xsd:string" use="required"/>

attribute multitask/@handler

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="handler" type="xsd:string" use="required"/>

attribute multitask/@persistent

type xsd:boolean

properties isRef 0
use required

source <xsd:attribute name="persistent" type="xsd:boolean" use="required"/>

element myproxy

diagram

143

namespace http://www.ogce.org/gsf/task

properties content complex

used by element multitask

attributes Name Type Use Default Fixed annotation
id xsd:string optional
hostname xsd:string required
port xsd:string required
lifetime xsd:string required
username xsd:string required
password xsd:string required
handler xsd:string required

source <xsd:element name="myproxy">
 <xsd:complexType>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 <xsd:attribute name="hostname" type="xsd:string" use="required"/>
 <xsd:attribute name="port" type="xsd:string" use="required"/>
 <xsd:attribute name="lifetime" type="xsd:string" use="required"/>
 <xsd:attribute name="username" type="xsd:string" use="required"/>
 <xsd:attribute name="password" type="xsd:string" use="required"/>
 <xsd:attribute name="handler" type="xsd:string" use="required"/>
 </xsd:complexType>
</xsd:element>

attribute myproxy/@id

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

attribute myproxy/@hostname

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="hostname" type="xsd:string" use="required"/>

attribute myproxy/@port

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="port" type="xsd:string" use="required"/>

attribute myproxy/@lifetime

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="lifetime" type="xsd:string" use="required"/>

144

attribute myproxy/@username

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="username" type="xsd:string" use="required"/>

attribute myproxy/@password

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="password" type="xsd:string" use="required"/>

attribute myproxy/@handler

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="handler" type="xsd:string" use="required"/>

element root

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

children o:submit

source <xsd:element name="root">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="o:submit"/>
 </xsd:sequence>
 </xsd:complexType>
</xsd:element>

element submit

diagram

namespace http://www.ogce.org/gsf/task

properties content complex

145

children o:multitask

used by element root

attributes Name Type Use Default Fixed annotation
action xsd:string required
id xsd:string optional

source <xsd:element name="submit">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="o:multitask"/>
 </xsd:sequence>
 <xsd:attribute name="action" type="xsd:string" use="required"/>
 <xsd:attribute name="id" type="xsd:string" use="optional"/>
 </xsd:complexType>
</xsd:element>

attribute submit/@action

type xsd:string

properties isRef 0
use required

source <xsd:attribute name="action" type="xsd:string" use="required"/>

attribute submit/@id

type xsd:string

properties isRef 0
use optional

source <xsd:attribute name="id" type="xsd:string" use="optional"/>

146

Appendix B

Table 1. Attributes to dependency

Attribute name Required Description

id yes String: component id

task yes String: task component name

dependsOn yes String: task component that depends on

Table 2. Attributes to myproxy

Attribute name Required Description

id yes String: component id

hostname yes String: myproxy server name

port yes String: myproxy port number (default is 7512)

lifetime yes String: myproxy lifetime (default is 2 hours)

Username yes String: user name for stored credential

password yes String: password for stored credential

handler no String: defines bean method to submit this

component

Table 3. Attributes to multitask

Attribute name Required Description

id yes String: component id

taskname yes String: task name is for multitask

persistent no String: stores task information

handler no String: defines bean method to submit this

component

Table 4. Attributes to fileoperation

Attribute name Required Description

id yes String: component id

hostname yes String: gridftp server name

port yes String: gridftp port number (default is 2811)

provider yes String: gridftp provider name (default is ‘gridftp’)

path yes String: directory location on the local file system

command yes String: file operation (e.g. ls, mkdir)

handler no String: defines bean method to submit this

component

147

Table 5. Attributes to jobsubmit

Attribute name Required Description

id yes String: component id

hostname yes String: GRAM server name

provider yes String: GT provider name (default is ‘GT2’)

executable yes String: executable command or script name

arguments yes String: arguments of the command or the script

stdin yes String: standard input file name for the command

stdout yes String: standard output file name for the command

stderr yes String: standard error file name for the command

handler no String: defines bean method to submit this

component

Table 6. Attributes to filetransfer

Attribute name Required Description

id yes String: component id

from yes String: file location on source gridftp server

to yes String: file location on target gridftp server

handler no String: defines bean method to submit this

component

Table 7. Attributes to submit

Attribute name Required Description

id yes String: component id

action yes String: defines bean method to submit this

component

actionListener yes String: defines action listener method

Table 8. Attributes to handler

Attribute name Required Description

id yes String: component id

action yes String: defines bean method to submit this

component

actionListener yes String: defines action listener method

148

Bibliography

[1] National e-Science centre for UK. [cited; Available from:

http://www.nesc.ac.uk/.

[2] Atkinson, M., et al., Web Service Grids: an evolutionary approach.

Concurrency and Computation: Practice and Experience, 2005. 17(2-4): p. 377-

389.

[3] Foster, I., et al., The Physiology of the Grid, in Grid Computing, G.F.T.H. Fran

Berman, Editor. 2003. p. 217-249.

[4] TeraGrid. [cited; Available from: http://www.teragrid.org/.

[5] Open Science Grid. [cited; Available from: http://www.opensciencegrid.org/.

[6] Enabling Grids for E-sciencE (EGEE). [cited; Available from: http://www.eu-

egee.org/.

[7] Coordinated TeraGrid Software and Services (CTSS). [cited; Available from:

http://www.teragrid.org/userinfo/software/ctss.php.

[8] The Virtual Data Toolkit. [cited; Available from: http://vdt.cs.wisc.edu/.

[9] gLite [cited; Available from: http://glite.web.cern.ch/glite/default.asp.

[10] Fox, G., D. Gannon, and M. Thomas, Special Issue: Grid Computing

Environments. Concurrency and Computation: Practice and Experience, 2002.

14(13-15): p. 1035-1044.

[11] Wilkins-Diehr, N., Special Issue: Science Gateways - Common Community

Interfaces to Grid Resources. Concurrency and Computation: Practice and

Experience, 2006. 19(6): p. 743-749.

149

[12] Droegemeier, K.K., et al., Linked environments for atmospheric discovery

(LEAD): A cyberinfrastructure for mesoscale meteorology research and

education. 20th Conf. on Interactive Information Processing Systems for

Meteorology, Oceanography, and Hydrology, 2004.

[13] Ewa, D., et al., Grid-Based Galaxy Morphology Analysis for the National

Virtual Observatory, in Proceedings of the 2003 ACM/IEEE conference on

Supercomputing. 2003, IEEE Computer Society.

[14] QuakeSim portal. [cited; Available from: http://quakesim.jpl.nasa.gov/.

[15] Nacar, M.A., et al., VLab: Collaborative Grid Services and Portals to Support

Computational Material Science Concurrency and Computation: Practice and

Experience, 2007. 19(12): p. 1717-1728.

[16] Abdelnur, A., E. Chien, and S. and Hepper, (eds.) Portlet Specification 1.0.

2003 [cited; Available from: http://www.jcp.org/en/jsr/detail?id=168.

[17] Novotny, J., M. Russell, and O. Wehrens, GridSphere: a portal framework for

building collaborations. Concurrency - Practice and Experience, 2004. 16(5): p.

503-513.

[18] GridSphere. [cited; Available from: http://www.gridsphere.org.

[19] uPortal [cited; Available from: http://www.uportal.org/.

[20] Pluto. [cited; Available from: http://portals.apache.org/pluto/.

[21] Jetspeed. [cited; Available from: http://portals.apache.org/jetspeed-1/.

[22] Sakai. [cited; Available from: http://sakaiproject.org/.

[23] Liferay. [cited; Available from: http://www.liferay.com/web/guest/home.

[24] JBoss. [cited; Available from: http://labs.jboss.com/.

150

[25] Exo Portal. [cited; Available from:

http://www.exoplatform.com/portal/public/site/.

[26] OGCE web site. [cited; Available from: http://www.collab-ogce.org/ogce2/.

[27] Alameda, J., et al., The Open Grid Computing Environments collaboration:

portlets and services for science gateways. Concurrency and Computation:

Practice and Experience, 2007. 19(6): p. 22.

[28] Russell, M., J. Novotny, and O. Wehrens, The Grid Portlets Web Application: A

Grid Portal Framework. Parallel Processing and Applied Mathematics. 2006.

691-698.

[29] von Laszewski, G., et al., A Java commodity grid kit. Concurrency and

Computation Practice and Experience, 2001. 13(8-9): p. 645-662.

[30] Johnson, R., Expert One-On-One J2EE Design and Development. Wrox. 2003,

Indianapolis, IN, USA: Wiley Publishing, Inc.

[31] Singh, I., Designing Enterprise Applications with the J2ee (tm) Platform. 2002:

Addison-Wesley Professional.

[32] Gannon, D., et al., Grid portals: A scientist’s access point for grid services

(draft 1). Global Grid Forum, 2003.

[33] Globus toolkit. [cited; Available from: http://www.globus.org.

[34] Thain, D., T. Tannenbaum, and M. Livny, Condor and the Grid, in Grid

Computing: Making The Global Infrastructure a Reality, A.J.G.H. Fran

Berman, Geoffrey Fox, Editor. 2003, John Wiley.

[35] Erwin, D.W., UNICORE—a Grid computing environment. Concurrency and

Computation: Practice and Experience, 2002. 14(13-15): p. 1395-1410.

151

[36] Sirvent, R., et al., GRID superscalar and SAGA: forming a high-level and

platform-independent Grid programming environment. CoreGRID Integration

WorkShop, 2005. 2005.

[37] Russell, M. Vine project. [cited; Available from:

http://gforge.man.poznan.pl/gf/project/vine/.

[38] Nacar, M.A., et al., Building QuakeSim Portlets with GTLAB, in GCE 07 at SC

07. 2007: Reno, NV.

[39] Fox, G.C. and D. Gannon, Special Issue: Workflow in Grid Systems.

Concurrency and Computation: Practice and Experience, 2006. 18(10): p. 1009-

1019.

[40] Java Server Pages (JSP). [cited; Available from:

http://java.sun.com/products/jsp/.

[41] Java Server Faces (JSF). [cited; Available from:

http://java.sun.com/javaee/javaserverfaces/.

[42] McClanahan, C., E. Burns, and R. Kitain, Java Server Faces Specification.

Version 1.1.

[43] Extensible Markup Language (XML). [cited; Available from: Extensible

Markup Language (XML).

[44] Java Servlet Technology. [cited; Available from:

http://java.sun.com/products/servlet/.

[45] Oinn, T., et al., Taverna: lessons in creating a workflow environment for the life

sciences. Concurrency and Computation: Practice and Experience, 2006.

18(10): p. 1067-1100.

152

[46] Goble, C.A. and D.C. De Roure, myExperiment: social networking for

workflow-using e-scientists, in Proceedings of the 2nd workshop on Workflows

in support of large-scale science. 2007, ACM: Monterey, California, USA.

[47] CIMA portal. [cited; Available from:

http://cimaportal.indiana.edu:8080/gridsphere.

[48] Nacar, M., et al., Designing Grid Tag Libraries and Grid Beans, in Second

International Workshop on Grid Computing Environments GCE06 at SC06.

2006: Tampa, FL.

[49] Okada, Y., Surface Deformation Due to Shear and Tensile Faults in a Half-

Space. BSSA, 1985. 75(4): p. 1135-1154.

[50] Parker, J.W., Donnellan, A., Lyzenga, G., Rundle, J.B., and Tullis, T.

Performance Modeling Codes for the QuakeSim Problem Solving Environment.

in Proceedings of the International Conference on Computational Science (Part

III). 2003: Springer-Verlag, Berlin.

[51] Booth, D., et al., Web Service Architecture. W3C Working Group Note, 2004.

11.

[52] Nacar, M.A., M. Pierce, and G.C. Fox, Developing a secure grid computing

environment shell engine: containers and services. Neural, Parallel & Scientific

Computations, 2004. 12(3): p. 379-390.

[53] Kernighan, B.W. and R. Pike, The UNIX Programming Environment. 1984:

Prentice Hall Professional Technical Reference.

153

[54] Novotny, J., Grid Portal Development Toolkit (GPDK). Accepted for

publication in. Concurrency and Computation: Practice and Experience, Special

Edition on Grid Computing Environments, 2002. 14(13-15): p. 1129-1144.

[55] Pierce, M.E., C. Youn, and G.C. Fox, The Gateway computational Web portal.

Concurrency and Computation: Practice and Experience, 2002. 14(13-15): p.

1411-1426.

[56] Karl, C., et al., A Resource Management Architecture for Metacomputing

Systems. : Job Scheduling Strategies for Parallel Processing. 1998. 62.

[57] Allcock, B., et al. Secure, Efficient Data Transport and Replica Management

for High-Performance Data-Intensive Computing. in IEEE Mass Storage

Conference. 2001.

[58] Foster, I., A Globus Toolkit Primer. 2005.

[59] Novotny, J., S. Tuecke, and V. Welch. An Online Credential Repository for the

Grid: MyProxy. in Proceedings of the Tenth International Symposium on High

Performance Distributed Computing (HPDC-10). 2001.

[60] Czajkowski, K., Ferguson, D., Foster, I., Frey, J.,, S. Graham, Sedukhin, I.,

Snelling, D., Tuecke, S.,, and W. Vambenepe, The WS-Resource Framework.

2004.

[61] Foster, I., C. Kesselman, and S. Tuecke, The Anatomy of the Grid: Enabling

Scalable Virtual Organizations. International Journal of High Performance

Computing Applications, 2001. 15(3): p. 200-222.

[62] Kaizar, A., et al. Abstracting the Grid. in Proceedings of the 12th Euromicro

Conference on Parallel, Distributed and Network-Based Processing. 2004.

154

[63] Scandolo, S., et al., First-principles codes for computational crystallography in

the Quantum-ESPRESSO package. Zeitschrift für Kristallographie, 2005.

vol:220: p. 574-579.

[64] iGoogle. [cited; Available from: http://www.google.com/ig.

[65] Netvibes. [cited; Available from: http://www.netvibes.com/.

[66] Laszewski, G.v., et al., A Java commodity grid kit. Concurrency and

Computation: Practice and Experience, 2001. 13(8-9): p. 645-662.

[67] Chapman, C., et al. Condor Birdbath: Web Service interfaces to condor. in

Proc. UK e-Science All Hands Meeting. 2005. Nottingham UK.

[68] Box, D., et al., Simple Object Access Protocol (SOAP) 1.1. 2000, May.

[69] Frey, J., et al., Condor-G: A Computation Management Agent for Multi-

Institutional Grids. Cluster Computing, 2002. 5(3): p. 237-246.

[70] Barrett, D.J. and R.E. Silverman, SSH, the Secure Shell: The Definitive Guide.

2001: O'Reilly.

[71] Dahan, M. and E. Roberts, TeraGrid User Portal v1.0: Architecture, Design,

and Technologies, in Second International Workshop on Grid Computing

Environments GCE06 at SC06. 2006: Tampa, FL.

[72] OASIS: Organization for the Advancement of Structured Information Standards.

[cited; Available from: http://www.oasis-open.org/home/index.php.

[73] Ian, F., et al., A security architecture for computational grids, in Proceedings of

the 5th ACM conference on Computer and communications security. 1998,

ACM Press: San Francisco, California, United States.

[74] Christensen, E., et al., Web Services Description Language (WSDL) 1.1. 2001.

155

[75] Uddi, O.R.G., Universal Description Discovery and Integration (UDDI). 2002.

[76] Apache Axis. [cited; Available from: http://ws.apache.org/axis

[77] Mestrallet, B., Exo: New Open Source JSR 168 Compliant Portal and More.

[78] Kropp, A., C. Leue, and R. Thompson. Web Services for Remote Portlets

(WSRP). [cited; Available from: http://www.oasis-open.org.

[79] Bhatia, K., S. Chandra, and K. Mueller, GAMA: Grid Account Management

Architecture, in 1st IEEE International Conference on e-Science and Grid

Computing. 2005: Melbourne, Australia.

[80] PURSe. [cited; Available from: http://www.grids-center.org/solutions/purse/.

[81] GridShib. [cited; Available from: http://gridshib.globus.org/.

[82] Barton, T., et al., Identity Federation and Attribute-based Authorization through

the Globus Toolkit, Shibboleth, GridShib, and MyProxy. 5th Annual PKI R&D

Workshop, April, 2006.

[83] Shibboleth. [cited; Available from: http://shibboleth.internet2.edu/.

[84] Scavo, T. and S. Cantor, Shibboleth Architecture: Technical Overview. Working

Draft. 1.

[85] Hughes, J. and E. Maler, Technical Overview of the OASIS Security Assertion

Markup Language (SAML) V1. 1, in OASIS, May. 2004.

[86] Central Authentication Service (CAS). [cited; Available from: http://www.ja-

sig.org/products/cas/.

[87] Chadwick, D.W. and A. Otenko, The PERMIS X. 509 role based privilege

management infrastructure. Future Generation Computer Systems, 2003. 19(2):

p. 277-289.

156

[88] World Wide Web Consortium (W3C). [cited; Available from:

http://www.w3.org/.

[89] Bodoff, S., The J2EE Tutorial. 2002: Addison-Wesley Professional.

[90] Apache portal bridges. [cited; Available from:

http://portals.apache.org/bridges/.

[91] MyFaces. [cited; Available from: http://myfaces.apache.org/.

[92] Yin, H., et al., Providing Portlet-Based Client Access to CIMA-Enabled

Crystallographic Instruments, Sensors, and Data, in 7th IEEE/ACM

International Conference on Grid Computing (GRID 2006). 2006: Barcelona,

Spain.

[93] Nacar, M.A., et al. Building a Grid Portal for Teragrid’s Big Red. in TeraGrid

2007. 2007. Madison, WI.

[94] Bollig, E.F., et al., VLAB: Web Services, Portlets, and Workflows for Enabling

Cyber-infrastructure in Computational Mineral Physics. Physics of The Earth

and Planetary Interiors, 2007. 163(1-4): p. 333-346.

[95] Pallickara, S. and G. Fox, NaradaBrokering: A Distributed Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer Grids.

Middleware 2003. 2003. 41-61.

[96] Donnellan, A., et al., QuakeSim and the Solid Earth Research Virtual

Observatory. Pure and Applied Geophysics, 2006. 163(11): p. 2263-2279.

[97] Apache Ant. [cited; Available from: http://ant.apache.org/.

[98] McMullen, D.F. and K. Huffman, Connecting Users to Instruments and

Sensors: Portals as Multi-user GUIs for Instrument and Sensor Facilities

157

Concurrency and Computation: Practice and Experience, 2007(Special issue on

Grid portals).

[99] McMullen, D., T. Devadithya, and K. Chiu. Integrating Instruments and

Sensors into the Grid with CIMA Web Services. in Proc. of 3rd APAC

Conference on Advanced Computing, Grid Applications and e-Research

(APAC'05). 2005.

[100] Devadithya, T., et al. The Common Instrument Middleware Architecture:

Overview of Goals and Implementation. in e-Science and Grid Computing, First

International Conference on e-Science and Grid Computing (e-Science 2005).

2005.

[101] Giacovazzo, C., Fundamentals of Crystallography. 2002: Oxford Univ Pr.

[102] SAINT. [cited; Available from: http://xray.utmb.edu/saint.html.

[103] The MEME/MAST System. [cited; Available from:

http://meme.sdsc.edu/meme/intro.html.

[104] Oinn, T., et al., Taverna: a tool for the composition and enactment of

bioinformatics workflows. Bioinformatics, 2004. 20(17): p. 3045-3054.

[105] How to write your own JSF components. [cited; Available from:

http://www.exadel.com/tutorial/jsf/HowToWriteYourOwnJSFComponents.pdf.

[106] GTLAB Schemas. [cited; Available from:

http://grids.ucs.indiana.edu/users/manacar/GridTags/GridTagsInterface/GridTag

sXMLSchema.xsd.

[107] Tanenbaum, A.S. and M.v. Steen, Distributed Systems: Principles and

Paradigms. 2002: Prentice Hall. 803.

158

[108] Rajasekar, A., et al., Storage Resource Broker-Managing Distributed Data in a

Grid. Computer Society of India Journal, Special Issue on SAN, 2003. 33(4): p.

42-54.

[109] Schwidder, J., T. Talbott, and J. Myers, Bootstrapping to a semantic grid.

Cluster Computing and the Grid, 2005. CCGrid 2005. IEEE International

Symposium on, 2005. 1.

[110] Bunting, B., et al. Web Services Context (WS-Context). 2003 [cited; Available

from: http://docs.oasis-open.org/ws-caf/ws-context/v1.0/wsctx.html.

[111] Aktas, M.S., G.C. Fox, and M. Pierce, Managing Dynamic Metadata as

Context, in The 2005 Istanbul International Computational Science and

Engineering Conference (ICCSE2005), Istanbul, Turkey. 2005.

[112] HttpClient. [cited; Available from:

http://jakarta.apache.org/httpcomponents/httpclient-3.x.

[113] Google Web Toolkit (GWT). [cited; Available from:

http://code.google.com/webtoolkit/.

[114] Direct Web Remoting (DWR). [cited; Available from: http://getahead.org/dwr.

[115] Garrett, J.J., Ajax: A New Approach to Web Applications. Adaptive Path, 2005.

18.

[116] Humphrey, M., et al., State and events for web services: a comparison of five

WS-resource framework and WS-notification implementations. High

Performance Distributed Computing, 2005. HPDC-14. Proceedings. 14th IEEE

International Symposium on, 2005: p. 3-13.

159

[117] Altintas, I., et al. Kepler: an extensible system for design and execution of

scientific workflows. in Scientific and Statistical Database Management, 2004.

Proceedings. 16th International Conference on. 2004.

[118] Ludäscher, B., et al., Scientific workflow management and the Kepler system.

Concurrency and Computation: Practice and Experience, 2006. 18(10): p. 1039-

1065.

[119] Andrews, T., et al., Business Process Execution Language for Web Services

Version 1.1. 2003.

[120] Altintas, I., et al. A Modeling and Execution Environment for Distributed

Scientific Workflows. in Proceedings of the 15
th

 International Conference on

Scientific and Statistical Database Management (SSDBM). 2003. Boston, MA.

[121] Tom, O., et al., Delivering web service coordination capability to users, in

Proceedings of the 13th international World Wide Web conference on Alternate

track papers \& posters. 2004, ACM Press: New York, NY, USA.

[122] Freefluo workflow enactment engine. [cited; Available from:

http://freefluo.sourceforge.net.

[123] Laszewski, G.v., M. Hategan, and D. Kodeboyina, Work Coordination for Grid

Computing. 2007.

[124] Atkinson, B., et al. (2004) Web services security (ws-security). Volume,

[125] Perera, S. and D. Gannon, Enabling Web Service Extensions for Scientific

Workflows, in HPDC2006 Workshop on Workflows in Support of Large-Scale

Science (WORKS06). 2006: Paris, France.

160

[126] Purse portlets. [cited; Available from: http://www.collab-

ogce.org/ogce2/purse-portlets.html.

[127] Sandhu, R., D. Ferraiolo, and R. Kuhn, The NIST model for role-based access

control: towards a unified standard. Proceedings of the fifth ACM workshop on

Role-based access control, 2000: p. 47-63.

[128] Indiana University Molecular Structure Center (IUMSC). [cited; Available

from: http://www.iumsc.indiana.edu/.

[129] RSS portlet. [cited; Available from: http://sourceforge.net/projects/rssportlet.

161

